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CHAPTER 1 INTRODUCTION 

In the most recent two decades or so, there has been great interest in the examination 

of non-linear time series models. The interest mainly results from a large literature 

documenting the asymmetric behavior of many macroeconomic variables. Neftci (1984) 

presented his seminal paper by showing that U.S. unemployment displays asymmetric 

adjustment over the course of the business cycle. Falk (1986) applied Neftci's method to real 

GNP, investment and productivity in U.S. and industrial production in Canada, France, Italy, 

Germany and the United Kingdom and found little evidence of asynmietry. Non-linearities 

have been found in Divisia monetary aggregates (Bamett and Chen, 1988). Brock and 

Sayers (1988) and Scheinkman and LeBaron (1989) found little evidence of non-linear 

dynamics in output, but important non-linearities in industrial production and employment 

series. Ashley and Patterson (1989) found non-linearities in industrial production and 

employment series, too. Asymmetric processes of U.S. sales, production and inventories 

adjusting toward their long-run equilibriimi relationships were shown by Granger and Lee 

(1989). Beaudry and Koop (1993) found that negative innovations to GNP are much less 

persistent than positive ones. The positive correlation of asymmetric effects of monetary 

shocks on output and expected inflation was reported by Rhee and Rich (1995). Tinsley and 

Krieger (1997) found that the negative deviations from the trend of production are larger 

than the positive ones and that price levels are more ready to increase than to decrease. 
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Recently, much work has been done to specify the type of non-linearity, model the 

non-linearity and explain the reasons of non-linearity. Terasvirta and Anderson (1992) 

modeled industrial production in 13 OECD countries as smooth transition autoregressive 

models and found that industrial production responds more sharply to negative shocks than 

to positive shocks. Sichel (1993) used "deepness" and "sharpness" to describe the 

asymmetric behavior over the business cycle. Deepness means that troughs are more 

pronounced than peaks and sharpness means that contractions are steeper than expansions. 

Then the evidence of deepness and sharpness in U.S. unemployment, only deepness in U.S. 

industrial production and GNP was found. Potter (1995) modeled changes in real U.S. GNP 

as a threshold adjustment process and found that the post-1945 U.S. economy is 

significantly more stable than the pre-1945 U.S. economy. Shen and Hakes (1995) applied a 

threshold autoregressive model to the reaction function of the central bank of Taiwan and 

found that the central bank responds asymmetrically to its policy objectives when the 

severity of inflation differs. Ramsey and Rothman (1996) found both steepness and deepness 

in several of the Nelson and Plosser (1982) data series. Ball and Mankiw (1994) presented a 

menu-cost model with positive trend inflation to show that prices respond more strongly to 

positive shocks than to negative shocks. 

However, little has been studied about in-sample estimating and out-of-sample 

forecasting performance of a set of non-linear time series models for those time series 

documented to have asymmetric behavior. Rothman (1998) found that several non-linear 

forecasts do dominate the linear forecast of the unemployment rates and that the results are 
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sensitive to whether a stationarity-inducing transformation is applied to the potentially 

nonstationary unemployment rate series. Thus, one purpose of this study is to see how the 

non-linearities can be estimated and forecasted by different non-linear time series models. 

Since an extensive literature has examined the asymmetric adjustments of the term structure 

of interest rates and the spread of wholesale and farm pork prices in U.S., I will work on 

these series. 

A related question is whether the series is overfitted. When we estimate and forecast a 

time series by a set of linear and non-linear time series models and find that non-linear time 

series models dominate linear models, can we say that non-linear models work better for the 

non-linear time series than linear models? Is it possible that the data is overfitted? In 

practice, when we fit data, we search for the "best" model from a set of some predetermined 

models by some criteria, for example, goodness-of-fit, Akaike information criterion (AIC), 

Schwartz Bayesian criterion (SBC), etc. Whether the data is overfitted is never answered. 

Some think that overfitted models should predict out-of-sample poorly. Is this the case? Can 

we use mean squared prediction error (MSPE) as a criterion to choose correct models? I am 

going to use a Monte Carlo simulation to study overfitting and forecasting in the univariate 

time series context. 

This dissertation is organized as follows. Chapter 2 reviews various time series models 

used in this dissertation. Chapter 3 studies overfitting and forecasting by a Monte Carlo 

simulation. Chapter 4 applies different time series models to the term structure of interest 

rates in U.S. to study their in-sample estimating and out-of-sample forecasting 
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performances. Chapter 5 applies different time series models to the spread of wholesale and 

farm pork prices in U.S. to study their in-sample estimating and out-of-sample forecasting 

performances. Conclusions of this study and suggestions for future research are provided in 

Chapter 6. 
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CHAPTER 2 VARIOUS TIME SERIES MODELS 

Autoregressive integrated moving average (ARIMA) models, threshold autoregressive 

(TAR) models, exponential autoregressive (EAR) models, smoothing transition 

autoregressive (STAR) models, bilinear autoregressive (BL) models, generalized 

autoregressive (GAR) models and generalized autoregressive conditional heteroskedasticity 

(GARCH) models are briefly reviewed in this chapter. All these models are parametric 

univariate time series. All the non-linear time series models are state-dependent in the sense 

that their dynamics vary with their past processes. 

2.1 Autoregressive Integrated Moving Average (ARIMA) Models 

Let y, be a time series. The objective is to model the conditional mean of y, 

parametrically given previous observations. Let 

Xt = f (yt-i, e,.j, i = 1,..., p, j = 1 ,...,q. 0) + e, (2.1) 

where {e,, t ^ 1} is a series of white noise process with zero mean. Then, the conditional 

mean of y, is given by 

Yl I yt-i» ~ 1> •••' P>i — •••> ~ ®t-j> ' ~ 1» •••» P» j ~ •••» ® ) (2.2) 

where the function f(.) is known and 6 is an unknown parameter vector to be estimated. 

Until recently, most of time series modeling has been confined to linear models, i.e., 

autoregressive integrated moving average (ARIMA) models. The standard ARIMA (p, d, q) 

model has the following form: 
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»=i 
. + e + 

*=1 
(2.3) 

where means that yj has been differenced d times; thus, y, has d unit roots and is said to 

be integrated of order d, denoted 1(d) (see Engle and Granger, 1987). In practice, d is usually 

0, I or 2. The ARIMA (p, d, q) models have been extensively analyzed and popularized by 

Box and Jenkins (1970), where model specification, estimation and diagnostic checking 

were analyzed. The model specification phase consists in determining d, the degree of 

differencing needed to make y, stationary, and in determining p and q. The estimation phase 

yields estimates of the parameters {0,,; i = 1,..., p}, {02i; i = 1,..., q} and for 

given values of p and q. The model verification is used to check whether the estimated 

residual process {e^} can be identified as a white noise process. Since these models are very 

popular, I am not going to discuss the specification, estimation and verification in detail 

here. For simplicity, when I refer to yt later on, I assume it is 1(0), possibly after some prior 

differencing or other transformation. Thus, I use autoregressive moving average (ARMA) 

models rather than ARIMA models. 

2.2 Threshold Autoregressive (TAR) Models 

These are sometimes also called self-exciting threshold autoregressive (SETAR) 

models, developed by Tong (1983). Tong (1990) defined TAR (k; p,...,p), where p is 

repeated k times, as: 
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y, = ^ ^ Rj: j=I' •••' k (2.4) 
/=i 

whereRj = (rj.,. tj], ro=-<», rk= + '», ro<r, <... <rk, {ri.i = 1, ...,k-l} are real numbers and 

called thresholds, is the transition variable, and d is called the delay variable. Thus, the 

real line R is partitioned as: R = R, u R2... u R,t with an AR model in each regime. The 

parameter values change abruptly through time due to a switching rule, which depends on an 

earlier value of the series. The major features of the models are asymmetric limit cycles, 

amplitude dependent frequencies and jimip resonances'. 

A much simpler form of TAR models can be defined as: 

y , ' \ *  Pi-*",-/, * P i  V.-, ^ 

where It is the Heaviside indicator function such that 

(2.5) 

-

' '/ y,., 2 0 

o i f i , < o  

These models can capture the deepness phenomenon if autoregressive process is more 

persistent for the negative phase than for the positive phase, i.e., | Pi | < I P21-

The above (2.5) models become momentum threshold autoregressive (M-TAR) 

models (Enders and Granger, 1998) if the Heaviside indicator function It is defined as: 
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' j 0 '/ ̂ y,.i < 0 

1 if ^ 0 
(2.7) 

The M-TAR models can capture the sharpness phenomenon if the autoregressive 

decay is faster for the negative change of a variable than for the positive change of a 

variable, i.e., | pi | < I P21-

We can easily extend (2.5) to the more general form of (2.8): 

In (2.8), the residual is restricted to be the same across regimes, which is different 

from (2.4). (2.8) is useful if we want to restrict certain estimated coefficients to be equal 

across regimes. Also, (2.6) and (2.7) can be extended to the Heaviside indicator functions 

with more than two regimes. I use (2.8), rather than (2.4), to estimate TAR models in this 

dissertation. 

Chan (1993) showed that the conditional least squares estimator of a stationary 

ergodic^ TAR model is strongly consistent. Thus grid search can be used to find the 

threshold(s) and then get the conditional least squares estimator. The procedure is described 

as follows: 

I. Decide the range of the order and delay variable. 

n. For a fixed threshold and delay variable, use conditional least squares to 

= K'. * 9»(i w, * t ^ 
\ ' 1=1 \ ' 

(2.8) 
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estimate the TAR model. 

in. The above steps repeated for each delay variable and each threshold. The 

threshold and delay variable are chosen to minimize the conditional sum of 

square errors. Usually, the threshold is chosen from a range of the 

observations, for example, from the 10-th percentile to the 90-th percentile of 

the series. 

Also, the arranged autoregression method was proposed by Tsay (1989) to test and 

build TAR models. The procedure is described as follows. 

I. Select the order p and the possible set S for d. The partial autocorrelation 

frmction (PACF), Akaike information criterion (AIC) and Schwartz 

Bayasian criterion (SBC)^ can be used to choose p; d is usually assumed to 

be less than or equal to p. 

n. Order the observations, fit the arranged autoregressions for the given p and 

every element d in S, and perform a threshold non-linearity F-test. If linearity 

is rejected for more than one d, select d by minimizing the p-value of the F-

test. 

m. For given values of p and d, locate threshold values by using the scatter plots 

of the standardized predictive residuals versus yt.^, or/and predictive residuals 

versus y,^ or/and t-ratios of recursive estimates of a significant AR coefficient 

versus yt^. 

IV. If necessary, refine the order p and threshold values in each regime using 
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linear autoregressive techniques. 

This class of models has been used in many studies. Tong and Lim (1980) showed that 

TAR models can capture the asymmetric behavior exhibited in the annual Wolfs sunspot 

data and Canadian lynx data. Shen and Hakes (1995) estimated a TAR model for the 

reaction function of the central bank of Taiwan. Potter (1995) modeled real U.S. GNP as a 

two-regime TAR model, and Enders and Granger (1998) used TAR and M-TAR models to 

study the asymmetric adjustments of the term structure of interest rates in U.S.. Tsay (1989) 

applied TAR models to the sunspot and Canadian lynx series. For example, he estimated the 

logged Canadian lynx data"* as: 

=0.083 + 1.096y,., 2.373 

= 0.63 + 0.96>'^ , 

+ 0 . 2 8 > ' , . , 1 /  2 . 3 7 3  < > ' ^ . 2  < 3 - 1 5 4  

=2.323 +1.530>'^., - 1.266>',.2+ef\ ^ 

2.3 Exponential Autoregressive (EAR) Models 

EAR models and their extensions were studied by Ozaki and Oda (1978), Haggan and 

Ozaki (1981), and Lawrance and Lewis (1980). 

The general form of the p-th order EAR models can be defined as : 

(2.9) 
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where 0. = a. + p.expl-yy^^J , / = I, p, 7 > 0 is the smoothness parameter, d is the 

delay parameter, and ^ is the transition variable. 

When Y - 0 or oo, the models become AR(p) models When 7 < «>, the models display 

non-linear behavior. The coefficients of the variables switch smoothly with changes of 

The models can capture a situation in which the periods surrounding the tiuning points of a 

time series have similar dynamic structures whereas the middle ground can have different 

dynamics. 

Haggan and Ozaki (1981) proposed the following estimation procedure for estimating 

the coefficients {5,7, (Oj, p,, i = 1,..., p)} and order p for d = 1 in (2.9) by ordinary least 

squares: 

I. First, the value of 7 is fixed; then {S, (Oj, Pj; i = 1,..., p)} can be estimated by 

ordinary least squares. The order of p is determined by minimizing AIC. 

n. The above analysis is repeated for each 7 and AIC is used to select the most 

suitable value of 7. The values of 7 are usually chosen fi-om a range such that 

exp|-7y^^ ,| is different firom both zero and one for most values of y,.,. 

They then used the above procedure to estimate the Canadian lynx data^ as follows: 

.09 + 0.01exp|-3.89x^^j| J + -0.28 - 0.49exp|-3.89*^^|| 

0.27 - 0,06exp|-3.89*^^j| ^ + -0.45 + 0.30exp|-3.89*^^,||x^^ 

0.41 - 0.54exp|-3.89x^^j|Jx^^ + -0.36 + 0.61exp|-3.89x^^j|Jx^ ^ 

0.22 - 0.53exp|-3.89x^^j||x^ ,y+ -0.10 + 0.30exp|-3.89x^^j|Jx^ ^ 
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+lo.22 - 0.18exp(-3.89x/_,|J*^.,+[-0.07 + 0.18exp(-3.89x/.j|Jx_,g 

+1-0.38 + 0.16exp(-3.89x/.,)Jx^.j, 

2.4 Smoothing Transition Autoregressive (STAR) Models 

STAR models can be written as: 

/(>',.i = = 1.-.^; 0) 

' \ * ' t * 'o • ^ V,-, ^,.j) /=1 1=1 ) ^ ' 
(2.10) 

where is a continuous function which may be either even or odd, d is the delay 

parameter, and y,.d is the transition variable. Bacon and Watts (1971) and Maddala (1977: 

396) were early proponents of such models. Granger and Terasvirta (1993) systematically 

described the functional form, specification, estimation and some application results of the 

STAR models. The STAR models can be used to describe the situation of smooth switch. 

If we define 

If,-,) = {i * «p } I - I  (2.11) 

and Y > 0 is the smoothness parameter, we get logistic smoothing transition autoregressive 

(LSTAR) models. 

LSTAR models are state-dependent autoregressive models with the parameter of y,.! 

changing monotonically with changes of When y - <», becomes a Heaviside 

^ , 1 ^ c 
mdicator function: 

0 
, and (2.10) become TAR models. When y - 0, 
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(2.10) becomes AR(p) models. LSTAR models describe situations where y,.j > c and yt.<, < c 

may have rather different dynamics, and a transition from one to the other may be smooth. 

If we define 

and Y > 0 is the smoothness parameter, we get exponential smoothing transition 

autoregressive (ESTAR) models. 

ESTAR models are state-dependent autoregressive models with the parameters of y,.j 

changing symmetrically about c with changes of y,.4. When y - or 0, = 1, (2.10) 

become AR(p) models. Applied to the modeling of business cycle indicators, ESTAR 

models describe situations where y,^ > c and y,.d < c have rather similar dynamic structures 

whereas the middle ground can have different dynamics. 

According to Granger and Terasvirta (1993), the specification of STAR consists of 

three steps: 

I. Using the AIC or SBC to specify an AR(p) model and determining the 

rejected, simultaneously determining d. 

The details are described as follows: 

For a fixed d. linearity test against STAR consists of testing 

Ho : 02i~ 03i ~ 04i ~ ~ U •••> P 

against Hi: Hq is not valid in the artificial regression (2.13): 

(2.12) 

possible set D for d. 

H. Testing linearity for different values of the delay parameter d and, if it is 
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^ t; • t; <2.13) 
i=l t=l 1=1 /=! 

The test is carried out for the range of 1 ^d ^ D considered appropriate. If the linearity 

is rejected for more than one value of d, d is determined as J = argmin p(d) for I ^d sD, 

where p(d) is the p-value of the linearity test. 

in. Choosing between LSTAR and ESTAR models using a sequence of tests of 

nested hypotheses. 

The sequence of nested hypotheses to be tested is as follows: 

Ho4 :04i = 0, i = 1,..., p 

Ho3 : 03i ~ 0 I 04j = 0, i = 1,..., p 

Ho2 • 02i~ 0 I ®3i ~ 04i ~ 0, i = 1,..., P 

If the test of Ho3 has the smallest p-value, choose an ESTAR model; otherwise select a 

LSTAR model. 

Once models have been chosen, the estimation can be done by non-linear least 

squares. TerSsvirta and Anderson(1992) used the technique above to model the indices of 

industrial production for 13 OECD countries and Europe, and the relationship between U.S. 

GNP and the U.S. Department of Commerce index of leading indicators. Superior in-sample 

perfonnance was found. For example, they estimated the four-quarter differences, yt, of the 

logarithm of U.S. industrial production index as the following LSTAR model": 
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-0.021 *OJSy^_, *0.24y,_, -1.03,/,.^+O.333;,,, 

+(0.021 + 1.61;v,., -0.57v,.j -0.24y,,, 1.03y,.^ -0.33>',.,). 

(1 +exi)|-49*17.5^j^j -0.0061 J J'* +e^ 

where the restrictions 5; = 0j, i = 0, 3,4,9, are imposed, suggested by the data. 

2.5 Bilinear Autoregresslve (BL) Models 

The general form of bilinear models, BL (p, q, r, s), is: 

y .  =  ^  ^  ̂  ( 2  i 4 )  
'  i = l  '  '  i = \  i  =  \  7  = 1  • '  ^  

Bilinear models are natural extensions of ARMA models. From (2.14), we can see that 

bilinear models add the crossproducts of y,.! andCt.j to account for the non-linear character of 

the model: if all the CjjS are zero, they reduce to ARMA models. Bilinear models have the 

property that they can approximate arbitrarily closely any reasonable non-linear relationship 

(Priestley, 1980). 

Although bilinear models are natival extensions of ARMA processes, few economic 

applications appeared. Subba Rao and Gabr (1980) and Poskitt and Tremayne (1986) used 

economic time series to illustrate the methodology of specification, estimation, and forecast 

of bilinear models. Maravall (1983) used a bilinear model to estimate and forecast the 

Spanish currency series and found that bilinear models are particularly appropriate for series 

with sequences of outliers, during which periods a different "regime" seems to apply. Thus, 

the bilinear part of the model acts to smooth outliers; for the "normal" regime the bilinear 
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part is dominated. 

Subba Rao and Gabr (1984) proposed an algorithm for choosing the order of the BL 

(p, 0; r, s) as follows: 

I. Choose a fixed integer y, the maximum order to consider (y should be greater 

than or equal to p*, the order of the best AR model). 

II. For a p 5 Y, fit a linear AR(p) model and let the corresponding residual 

variance be ^JAR)-

m. Take the coefficients obtained fi'om H as initial estimates of the 

autoregressive part of BL(p, 0; 1,1), set c,, = 0, estimate the model, and 

calculate the corresponding 6^ and AIC for the fitted model. 

IV. Fit the BL(p, 0; 1,2) and BL(p, 0; 2, 1) by using the coefficients from III as 

initial values of the parameters and set the remaining parameters equal to 

zero. Calculate the corresponding and AIC for the fitted model. 

V. Take the coefficients obtained from BL(p, 0; 1,2) or BL(p, 0; 2, 1), 

whichever has smaller residual variance, as the initial values for fitting BL(p, 

0; 2,2). The procedure is continued, as shown in Fig. 2.1 for all possible 

combination (r, s), such that r, s < y-

VI. Repeat all the steps II to V for p = I,..., y and for each value of p. The 

procedure stops if the residual variance increases as r and s increase, 

vn. Choose the model which has the minimum AIC. 
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AR(p) (I 1) (1, 2) (1. 3) ... 

(2.1) 

i 1 

(2.2) (2.3)... 

i 
(3.1) (3.2)... 

i 

Figure 2.1 Algorithm to Choose Initial Values for Parameters of Bilinear Models 

Source: Subba Rao and Gabr (1984), Fig. 5.1, page 177. 

Subba Rao and Gabr (1984) maximized the likelihood function to estimate the 

parameters of bilinear models by the Newton-Raphson iteration method. They pointed out 

when fitted to a real time series, some of the coefficients for the full bilinear models of the 

form (2.14) may be "small", compared to other coefficients. Therefore, it is useful to see 

whether it is possible to fit a subset bilinear model to the data which leads to a parsimom'ous 

representation. The algorithm of choosing a subset bilinear model is; 

I. Choose the best full AR(p) model. 

n. Decide on the best subset AR model. 

m. Add an term y,., e(.j such that AIC is minimized for all i, j ^p. An extra term 
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y,.v e,.u is added, where u, v sp and (u, v) (i, j). This is repeated until the 

minimum AIC is attained. 

They used "subset" bilinear models to estimate and forecast the Wolfer sunspot data, 

Canadian lynx data and West German unemployment data. For example, the estimated 

bilinear model for the Wolfer Sunspot data' is: 

X =6.886 + 1.5012*. , -0.767x +.1152x -0.1458x ,e , +0.0063I2x .e , • /""l '"A /"l 

-0.007152X ,e -0.006041 x, J +0.003619x +0.004334x J , /-I 1-3 /-3 /-I t-6 t-2 t-4 

+ 0.001782x^.3 e,.2 

They then compared the results to ARMA and TAR models and found that bilinear 

models are better for estimation and forecast, compared with ARMA and TAR models. They 

concluded that subset bilinear models can form a useful class of non-linear models. 

2.6 Generalized Autoregressive (GAR) Models 

The general form of GAR models is: 

= E E * E E E E (215) 
I J p q tt V " 

where i, j, p, q, u, v are integers which are greater or equal to 1 and higher-order 

crossproducts can be added. We can see that GAR models extensions of AR models by 

adding high-order lagged values and crossproducts. Mittnik (1991) introduced a GAR model 

as an autoregressive analogue of the discrete Volterra series, which can be interpreted as a 
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non-linear moving-average representation of a generic non-linear process (see Priestley, 

1988). Since GAR models are linear in their parameters, linear least square can be used to 

estimate the parameters. For example, Rothman (1998) estimated log-linear detrended U.S. 

unemployment rate as the following GAR model^: 

= 1.500 -0.553 -0.745 + e 

2.7 Generalized Autoregressive Conditional Heteroskedasticity (GARCH) 

Models 

The general form of GARCH (p, q) models is: 

y, = E e,/,., (2.16) 

(2.17) 

" If 

where v^ is a normal white noise process with zero mean and variance of 1 and is 

independent of e,.,, yo. (Yu, i~U q) and {Y2j, j = 1,..., p} are positive constants. Thus, 

= t V,., ^ E 9aV, (2.19) 
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yar(y}W,.i) = 

20 

(2.20) 

where is the information set at t. That is, y, has nonconstant variances conditional on the 

past, but has constant unconditional variances. If p = 0, GARCH(p, q) models become 

ARCH(q) processes. 

Engle (1982) introduced ARCH models to estimate the nonconstant conditional 

variance, described the maximum likelihood estimation of ARCH process and the Lagrange 

multiplier procedure to test the ARCH process. In the end, he applied a ARCH model to 

estimate the means and variances of inflation in the U.K.' as follows; 

=0.0328 +0.162p,., +0.264/>,.^ -0.325p^.j - 0.0707(P-fF) 

h = 14*10 ''+0.955(0.4tf^ ̂ 0.3e}+02e\^QAej\ 
I \ /-I 1-2 l-i l-Af 

He found that the ARCH effect is significant and the estimated variances are more 

realistic than that of OLS during the chaotic seventies. Bollerslev (1986) extended Engle's 

ARCH models to GARCH models. GARCH models are now extensively used for financial 

time series. 

Notes 

• See Tong (1983), pages 35-44,77-82 and 77-79 for the argimients about asymmetric 

limit cycles, amplitude dependent fi^quencies, and jump resonances, respectively. 
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- See Tong (1983), pages 93-95 for the definition of ergodicity. 

^ Akaike information criterion (AIC) = T*ln(RSS) + 2*p; Schwartz Bayesian criterion 

(SBC) = T*Ui(RSS) + p*hi(T), where RSS is the residual sum of squares, which equals to 

T 

5^ (y ' y 's the fitted value of y„ T is the number of usable observations and p is the 
/=! ' ' 

number of estimated parameters. In this dissertation, all model orders are selected by the 

SBC, which chooses more parsimonious models than the AIC, given that the residuals do 

not have significant serial correlations. Both the AIC and SBC are reported for all selected 

models. 

* See Tsay (1989), page 237. 

' See pagel94, Haggan and Ozaki (1981). 

® See Terasvirta and Anderson (1992), page 125 for detail. In this paper, the STAR 

models were tried for both the term structure of interest rates and the spread of pork prices in 

U.S.. But no models with significant coefGcients of this form were found. 

^ See Subba Rao and Gabr (1984), pages 196-203 for detail. 

^ See Rothman (1998), page 165 for detail. 

' See Engle (1982), page 1002. 
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CHAPTER 3 A MONTE CARLO STUDY OF OVERFITTING AND 

FORECASTING TIME SERIES 

3.1 Introduction 

Overfitting means including too many regressors in the selected models or using more 

complicated non-linear models to estimate a linear or simple non-linear relationship. 

Overfitting may happen for model selection. For linear regression, as well known, when 

more regressors are added to the estimation, the fitting is usually improved. Thus, the 

problem of including too many regressors may happen. Many model selection criteria have 

been proposed to deal with this problem. For example, minimization of the AIC and/or SBC 

is often used to select models in practice. The AIC and SBC are the weighted sums of 

residual sum of squares and the number of regressors. So, when more regressors are added to 

regression, the AIC and SBC may increase even though residual sum of squares reduces. 

This tradeoff between residual sum of squares and the number of regressors can prevent 

adding too many regressors to regression to some extent. Usually, the SBC selects more 

parsimonious models than the AIC because the SBC punishes additional regressors to a 

larger extent than the AIC (From Note 3 in Chapter 2, the AIC punishes an additional 

parameter by 2, while the SBC punishes an additional parameter by ln(T), which is far larger 

than 2 in practice). When non-linearity is introduced, the problem of overfitting becomes 

more complicated. With more flexibility, non-linear models can do better for estimation than 
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linear models by intuition. Does overfitting happen? Can the AIC and SBC select correct 

models? We do not know. At the same time, how overfitting affects out-of-sampie forecast 

is not clear. Many think that overfit models should forecast poorly for out-of-sample forecast 

and thus, minimization of MSPE' can be used to select correct models. Is this the case? Can 

we use MSPE as a criterion to choose correct models? This problem is very important 

because when a set of linear and non-linear time series models are estimated for a given data 

set and non-linear models are better than the linear models by the criteria of the AIC and 

SBC, it is hard to conclude whether the dominance of non-linear models results from non-

linearity of the data or overfitting and what is the relationship between overfitting and 

forecasting. In order to answer these questions, I use a Monte Carlo simulation in the 

univariate time series context. 

3.2 Experiment Design 

The basic idea of the Monte Carlo simulation is as follows; First, generate a series 

from a known AR model, estimate it by different linear and non-linear models and calculate 

the corresponding AIC and SBC. Then, use these models to forecast one-step ahead 

recursively and calculate the corresponding MSPE. Finally, the results of the AIC, SBC and 

MSPE are used to check how different models behave for in-sample estimation and out-of-

sample forecast and the possibility of overfitting. I will generate the true AR(1) and AR(2) 

models to study it. 

Also, a series from a known TAR model is generated to check the possibility of 

"underfitting", i.e., fitting a non-linear time series by a linear time series, and 
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"misspecification", i.e., fitting a non-linear time series by other non-linear time series. 

The detailed procedure is described as follows: 

I. Generate a true AR(2) model; yt = Po + Pi yn + p2 yt-2 + where Ct is an i.i.d. 

normal (0,1) process, {p,, i = 0, 1,2} is a constant vector, t = 1,2,..., 100, 

and y, and are also drawn from a normal process with the true mean of 

Po/( 1 - Pi - P2) and variance of 1. 

n. Estimate y, as the true AR(2) model, AR model, ARMA model, TAR model 

with consistent estimate of the threshold (called TAR-C model), M-TAR 

model with consistent estimate of the threshold (called M-TAR-C model), 

GAR model, bilinear model and EAR model. Then the AIC and SBC are 

calculated for each model. The true AR(2) model is the model with known 

order and it is treated as a benchmark for comparison. The AR, TAR-C, M-

TAR-C, EAR and GAR models are the best models searching up to the third 

order. The ARMA model is the best model searching up to ARMA(2,1). The 

bilinear model is the best model searching up to BL(2,1; 2,1). Here, the TAR-

C model is of form (2.6) and (2.8), and the M-TAR-C model is of form (2.7) 

and (2.8). The consistent thresholds are estimated by Chan's (1993) method. 

All estimated parameters of the selected models, except the true AR(2) 

model, are significant at the 5% level. 

m. Forecast y, for each model, using one-step ahead recursive forecast for period 

of t = 51,52,..., 100. That is, the series y^ t = 1,...T, is used to forecast period 
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t = T +l and this process is repeated for T = 50,99. Then, the MSPE is 

calculated for each model. 

IV. Repeat step I to HI 1000 times. 

V. Report the means of the AIC, SBC and MSPE for each model in Table 3.1 

and the distributions of the AIC, SBC, MSPE for some selected parameter 

vectors in Figure 3.1 through 3.12. The means and distributions are used to 

check the average levels and variances of the AIC, SBC and MSPE, 

respectively. 

VI. Repeat step I to V for each parameter vector (pj i = 0, 1, 2}. In this study. 

The vector is chosen to be {1, 1.2,-0.5}, {1,0.5,0.4}, {1,0.9,0}, {1,0.5,0} 

and {1,0, 0.9}. The distributions of the AIC, SBC and MSPE of the 

parameter vector of {1, 1.2, -0.5}, {1,0.5, 0.4}, {1,0, 0.9}and {I, 0.5,0}are 

reported. 

The above steps are repeated for the true TAR models (3.1): 

y, = P,. • 'fy,-. ^' (3 

where {Pio.Pn.Pao.Pii.'^} is the parameter vector, e, is an i.i.d. normal (0,1) process. In this 

study, the vector is chosen to be {0.5,0.95,0.9,0.9, 9.5}, {0.3, 0.95, 3.2,0.6,7.2}, {0.4, 

0.95,4.2,0.3, 7}, {0.4,0.8,1.2,0.6,2.5}, and {1.2,0.8,1.4,0.3,4}. The threshold is chosen 

to be in the interval of the two long-run equilibriums of the two regimes. For the vector of 
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Table 3.1 The Means of the AIC, SBC and MSPE for the True AR(2) Models 

Po 1.0 1.0 1.0 l.O 1.0 

PI 0.5 1.2 0.0 0.9 0.5 

P2 0.4 -0.5 0.9 0.0 0.0 

ARl AIC NA NA NA 444.2697 444.4369 

AR2 AIC 445.5328 446.2637 444.8585 NA NA 

ARMA_AIC 445.4386 446.0124 444.5904 445.1879 444.0585 

BL_AIC 445.6017 446.0132 444.5625 445.7982 444.3319 

AR_AIC 445.6361 446.1329 444.6688 444.0751 444.0712 

EAR_AIC 445.6199 445.7208 443.8898 443.4854 443.7558 

GAR_AIC 444.4124 447.3273 443.8698 443.0844 443.2822 

TARC_AIC 442.9117 445.2952 442.0580 441.8941 442.1763 

MTARC_AIC 442.6889» 444.8783 441.9651 441.9085 442.2259 

AR2_SBC 453.2569 453.9878 450.0080 449.4191 449.5863 

ARMA_SBC 452.2976 453.9271 449.5004 450.5768 449.7615 

BL_SBC 453.0503 454.4274 449.9231 451.7123 450.7172 

AR_SBC 452.4848 453.9136 449.4681 448.9980 449.4498 

EAR_SBC 452.4763 453.6509 448.7998 448.5344 449.2683 

GAR_SBC 451.3873 455.0282 448.8493 448.0923 448.9517 

TARC_SBC 455.8985 462.0489 454.3626 453.0477 453.8475 

MTARC SBC 455.3307 460.2725 454.1924 453.7624 454.6335 

AR2_MSPE 1.0664 1.0572 1.0440 1.0497 1.0371 

ARMA_MSPE 1.1125 1.0719 1.0769 1.0985 1.0533 

BL_MSPE 1.1086" 1.0726 1.0737 1.1077 1.0524 

AR_MSPE 1.1208 1.0749 1.0796 1.0841 1.0558 

EAR_MSPE 1.1220 1.0978 1.0841 1.0885 1.0793 

GAR_MSPE 1.1222 1.2152 1.0969 1.1006 1.0904 

TARC_MSPE 1.2804 1.2824 1.2874 1.2454 1.2169 

MTARC_MSPE 1.2695 1.2389 1.2772 1.2334 1.2044 

'• The underlined numbers are the smallest among all the models for the AIC, SBC and 
MSPE for each parameter vector. 
^ The bold numbers are the smallest MSPEs except the true AR(2) models. 
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Finger 3.1 Distributions of the AIC for the True AR(2) Model: 
y(t) = 1 + 1.2*y(t-l) - 0.5*y(t-2) + e(t) 
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Finger 3.2 Distributions of the SBC for the True AR(2) Model: 
y(t) = 1 + 1.2*y(t-l) - 0.5*y(t-2) + e(t) 
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Finger 3.3 Distributions of tlie MSPE for the True AR(2) Model: 
y(t) = 1 + 1.2*y(t-l) - 0.5*y(t-2) + e(t) 
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Finger 3.4 Distributions of the AIC for the True AR(2) Model: 
y(t) = 1 + 0.5*y(t-l) + 0.4*y(t-2) + e(t) 
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Finger 3.5 Distributions of tlie SBC for tiie True AR(2) Model: 
y(t) = 1 + 0.5*y(t-l) + 0.4*y(t-2) + e(t) 
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Finger 3.6 Distributions of the MSPE for tiie True AR(2) Model: 
y(t) = 1 + 0.5*y(t-l) + 0.4*y(t-2) + e(t) 
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y(t) = I + 0*y(t-l) + 0.9*y(t-2) + e(t) 
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Finger 3.8 Distributions of the SBC for the True AR(2) Model: 
y(t) = 1 + 0*y(t-l) + 0.9*y(t-2) + e(t) 
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Finger 3.9 Distributions of the MSPE for tiie True AR(2) Model: 
y(t) = 1 + 0*y(t-l) + 0.9*y(t-2) + e(t) 
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y(t) = 1 + 0.5*y(t-l) + 0*y(t-2) + e(t) 
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Finger 3.11 Distributions of the SBC for the AR(2) True Model: 
y(t) = 1 + 0.5*y(t-l) + 0*y(t-2) + e(t) 
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{0.5,0.95,0.9,0.9,9.5}, the AR(1) processes above and below the threshold have long-run 

equilibriums of 10 and 9, respectively. Also, the difference of the persistence between the 

two regimes is very small. For the vector of {0.3,0.95,3.2, 0.6, 7.2}, the AR(1) processes 

above and below the threshold have long-run equilibriums of 6 and 8, respectively. Also, the 

difference of the persistence between the two regimes is median. For the vector of {0.4, 

0.95,4.2,0.3, 7}, the AR(1) processes above and below the threshold have long-run 

equilibriums of 8 and 6, respectively. Also, the difference of the persistence between the two 

regimes is large. For the vector of {0.4,0.8, 1.2,0,6, 2.5}, the AR(1) processes above and 

below the threshold have long-run equilibriums of 2 and 3, respectively. Also, the difference 

of the persistence between the two regimes is median. For the vector of {1.2, 0.8, 1.4,0.3, 

4}, the AR(1) processes above and below the threshold have long-run equilibriums of 6 and 

2, respectively. Also, the difference of the persistence between the two regimes is large. In 

this simulation, the two long-run equilibrium in the two regimes are chosen to be not very 

far apart from each other. Otherwise, the series will be mostly concentrated on one of the 

two regimes. This kind of threshold models can be illustrated in Figure 3.13, where is the 

long-run equilibrium for the AR process above the threshold, is the long-run equilibrium 

for the AR process below the threshold. 
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Figure 3.13 The Threshold Autoregressive Model with Two Distinct Long-run Equilibriums 

In fact, the TAR models with only one long-run equilibrium (see Figure 3.14) are also 

tried, but since the observations are attracted to the only long-run equilibrium, the 

observations on the lower side of the threshold are very rare. Thus, the results are not very 

good because we have too few observations to estimate the model on the lower side of the 

threshold accurately. In this experiment, I ignore this case. 
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T ^ Xt-I 

Figure 3.14 The Threshold Autoregressive Model with Only One Long-run Equilibrium 

For the TAR process, each series is estimated by the true TAR model, AR model, 

ARMA model, TAR-C model, M-TAR-C, GAR model, bilinear model and EAR model. I 

estimate the true TAR model with known threshold and order of 1 and treat it as a 

benchmark for comparison. All other models are selected by the same rule as above. Then 

the AIC and SBC are calculated for each model. The selected models are used to forecast 

one-step ahead recursively and the MSPE is calculated. The means of the AIC, SBC, MSPE 

for each model are reported in Table 3.2 and the distributions of the AIC, SBC, MSPE for 

each parameter vector of {0.5,0.95,0.9,0.9,9.5}, {0.4,0.95,4.2,0.3, 7} and {1.2,0.8,1.4, 

0.3,4} are shown by Figure 3.15 though Figure 3.23. 
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Table 3.2 The Means of the AIC, SBC and MSPE for the True TAR Models 

Pio 0.50 0.30 0.40 0.40 1.20 

Pll 0.95 0.95 0.95 0.80 0.80 

P20 
0.90 3.20 4.20 1.20 1.40 

P2I 
0.90 0.60 0.30 0.60 0.30 

T 9.50 7.20 7.00 2.50 4.00 

TAR_AIC 446.0258 446.1787 446.0276 445.6452 449.3015 

ARMA_AIC 445.1133 447.8633 452.5516 444.7521 464.6882 

BL_AIC 445.5999 448.3674 452.5603 445.0513 464.8412 

AR_AIC 444.0961 447.0731 452.2506 444.5751 464.3222 

EAR_AIC 443.5589 445.9150 450.5393 443.9089 462.2699 

GAR_AIC 443.1783 445.9794 450.4730 443.5974 462.0072 

TARC_AIC 441.4928» 441.7442 442.6870 441.4967 449.1756 

MTARC AIC 441.8919 444.8020 448.6649 442.7876 460.6419 

TAR_SBC 456.3246 456.4775 456.3265 455.9440 459.6004 

ARMA_SBC 449.9461 453.5251 457.8941 450.4577 469.7784 

BL_SBC 450.8858 454.9998 459.1310 451.5653 471.2084 

AR_SBC 448.4500 452.3152 457.1658 449.9408 469.0236 

EAR_SBC 448.0852 451.5382 455.9462 449.5604 467.3730 

GAR_SBC 447.7690 451.2653 455.6018 449.1356 467.2828 

TARC_SBC 452.2628 452.7459 453.1687 452.8589 460.4863 

MTARC SBC 453.2310 456.8362 460.0426 455.2080 471.9192 

TAR_MSPE 1.0932 1.0750 1.0822 1.0656 1.0983 

ARMA_MSPE 1.0867 1.1122 1.1727 1.0573 1.2937 

BL_MSPE 1.0980 1.1172 1.1710 1.0577 1.2910 

AR_MSPE 1.0687 1.1014 1.1697 1.0565 1.2929 

EAR_MSPE 1.0707 1.1108 1.1640 1.0800 1.2807 

GAR_MSPE 1.0845 1.1212 1.1771 1.0868 1.3060 

TARC_MSPE 1.2366 1.2117 1.2156 1.2042 1.2558 

MTARC_MSPE 1.2272 1.2638 1.3385 1.2163 1.4461 

' The underlined numbers are the smallest among all the models for the AIC, SBC and 
MSPE for each parameter vector. 
** The bold numbers are the smallest MSPEs except the true TAR models. 
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Finger 3.17 Distributions of the MSPE for the True Threshold Model: y(t) = 0.5 + 0.95*y(t-l) + e(t), 
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Finger 3.19 Distributions of the SBC for the True Threshold Model: 
y(t) = 0.4 + 0.95*y(t-l) + e(t), if y(t-l) >= 7, y(t) = 4.2 + 0.3*y(t-l) + e(t), if y(t-l) < 7 
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Finger 3.20 Distributions of tiie MSPE for the True Tiireshold Model: 
y(t) = 0.4 + 0.95*y(t-l) + e(t), if y(t-l) >= 7, y(t) = 4.2 + 0.3*y(t-l) + e(t), if y(t-l) < 7 
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Finger 3.22 Distributions of the SBC for the True Threshold Model: 
y(t) = 1.2 + 0.8*y(t-l) + e(t), if y(t-l) >= 4, y(t) = 1.4 + 0.3*y(t-l) + e(t), if y(t-l) < 4 



www.manaraa.com

u 

a 

110% 

90% 

70% 

50% 

30% 

10% 

-10% 

X • - arma 

o - - mtarc 

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2 2.05 2.1 2.15 2.2 2.25 2.3 2.35 2.4 

MSPE 
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3.3 Results Report 

3.3.1 The True AR(2) Models: y, = po + Pi yn + Pi Yt-i Ct 

From Table 3.1, the true AR(2) models have relatively large AIC and SBC in all 

models. The TAR-C and M-TAR-C models have smaller AIC than all other models, which 

indicates that these models can reduce residual variances substantially. The GAR, EAR and 

AR models have smaller SBC than all other models and have relatively small AIC too. 

However, since the SBC punishes an additional parameter to a larger extent than the AIC, 

the TAR-C and M-TAR-C models, which usually estimate more parameters than other 

models, have larger SBC than all other models. The distributions of the AIC and SBC 

indicate the same resuhs. Thus, since the AR and ARMA models can have smaller AIC and 

SBC than the true AR(2) models and the non-linear models can beat the linear models in the 

sense of reducing the AIC and SBC, the true AR(2) models can be dominated by other linear 

and non-linear models, which means that overfitting is very likely to happen for the AR 

processes if the AIC and SBC are used to select models. 

From the means of the MSPE, the true AR(2) models have the smallest MSPE among 

all the models and the TAR-C and M-TAR-C models have larger MSPE than all other 

models. The ARMA, AR and bilinear models have relatively small MSPE. This means that 

for the out-of-sample forecast, the true AR(2) models can predict the best. The distributions 

of the MSPE are consistent with these results. Thus, the MSPE is a good criterion to choose 

correct models if the series is an AR process, but the AIC and SBC can not correctly choose 

models. If we don't know the true order of the AR process, we hope to select the correct type 
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of models, i.e., the AR models. However, none of the AIC, SBC and MSPE can select the 

AR process because either the bilinear models or ARMA models have smaller MSPE than 

the AR models in most cases. The AR models forecast the best in only one case. 

3.3.2 The True TAR models; = • 
Pi. ^ , ^» 
p» • ^ «, ify,.,  < T 

From Table 3.2, the TAR-C models have the smallest AIC among all the models, 

which means that TAR models with consistent estimate of threshold can reduce residual 

variance a lot. The M-TAR-C models have relatively small AIC too. When the difference of 

the persistence between the two regimes is small or median, the AR, ARMA, EAR and GAR 

usually have smaller AIC than the true TAR models with known threshold, which means 

that underfitting and misspecification are very likely to happen. When the difference of the 

persistence between the two regimes is large enough, the true TAR models have smaller AIC 

than other models except the TAR-C models, which means that underfitting and 

misspecification are not very likely to happen. Thus, the AIC can be used to select the 

correct type of TAR models with consistent estimate of threshold, but it is not likely to find 

the true threshold and order by the criterion of the AIC. 

For a small or median difference of the persistence between the two regimes, the GAR 

models have the smallest SBC, the EAR, AR and ARMA models have relatively low SBC 

too and all the threshold models have larger SBC than other models. Thus, underfitting and 

misspecification are very likely to happen in this case if we use the SBC to select models. 
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For a large difference of persistence between the two regimes, either the true TAR or TAR-C 

models have the smallest SBC among all the models. Thus, underfitting and 

misspecification are not likely to happen in this case if we use the SBC to select models. 

As to the MSPE for the out-of-sample forecast, for a large enough difference of the 

persistence between the two regimes, the true TAR models forecast the best among all the 

models, but for a small difference of the persistence between the two regimes, the AR 

models have the smallest MSPE. The distributions of the AIC, ABC and MSPE indicate the 

same results as above. Thus, the MSPE can select the correct TAR processes only if the 

difference of the persistence between the two regimes is large enough. Otherwise, the AR 

models forecast the best. However, if we don't know the true order and threshold of the 

TAR process, the MSPE can't select the TAR process because either the AR or EAR models 

have smaller MSPE than the TAR models in most cases. The TAR-C models forecast the 

best in only one case. 

3.4 Summary 

To sum up, for AR processes, if the AIC and SBC criteria are used to select models, 

the possibility of overfitting is very high since the non-linear models and other linear models 

are very likely to have lower AIC and SBC. However, the MSPE for one-step ahead out-of-

sample forecast can be used to identify the true AR processes. 

For TAR processes, if the AIC and SBC are used to select models, the possibility of 

underfitting and misspecification is very high for a small or median difference of the 

persistence between the two regimes; the possibility of underfitting and misspecification is 
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very small for a large difference of the persistence between the two regimes. Also, it is not 

likely to find the true threshold and order. However, the AIC can be used to identify the 

TAR-C models. The SBC and MSPE can identify the true TAR process only if the 

difference of the persistence between the two regimes is large enough. 

However, if we don't know the true AR or TAR process, the MSPE can't select the 

AR or TAR models in most cases. Thus, none of the AIC, SBC and MSPE can select the AR 

model for a given AR process with unknown order. For a TAR process, the AIC can 

consistently identify the TAR-C process and the SBC can identify the TAR-C process only 

if the difference of the persistency is large enough. 

Notes 

' The mean squared prediction error (MSPE) criterion measures the mean of the 

squared forecast errors. This is a very popular loss function to assess the forecast 

appropriateness of a model. MSPE = — , where y is the forecast value of y, and n 
ft 

is the number of forecasts. 
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CHAPTER 4 ESTIMATION AND FORECAST OF THE TERM 

STRUCTURE OF INTEREST RATES IN U.S. 

4.1 Literature Review 

Many authors have been investigating the asymmetric adjustments of interest rates. 

Anderson (1994) estimated a smooth transition error-correction model of the U.S. treasury 

bill market. Balke and Fomby (1997) showed that various short-term interest rates exhibit 

threshold cointegration. Enders and Granger (1998) developed TAR and M-TAR unit-root 

tests', applied them to the term structure of interest rates and found that the term structiu-e of 

interest rates is stationary with asynmietric adjustments toward the long-run equilibrium. 

They then used an asymmetric error-correction model with M-TAR adjustments to estimate 

the asymmetric adjustments of long-term and short-term interest rates to the discrepancy 

between the short-term and long-term rates. Enders and Siklos (1999) provided the empirical 

evidence of error-correction with M-TAR adjustment among interest rates of different 

maturities in U.S.. Guirauis (1994) discussed that the ex ante real and nominal interest rates 

respond asymmetrically to money innovations. The cautious policy or possibly opportunistic 

behavior of the Fed implies the asymmetric behavior of the term structure of interest rates. 

When the long-term interest rate (representing inflationary expectations) increases, the Fed 

adjusts the federal funds rate, an instrument of monetary policy, to decrease inflationary 

expectations. However, when the long-term interest rate decreases, the Fed does nothing. 
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However, none has been studies about how to estimate and forecast the term structure 

of interest rates. Toward this end, I will apply various non-linear time series models to the 

term structure of interest rates to study their in-sample estimating and out-of-sample 

forecasting performances. 

4.2 Data Description 

The empirical analysis uses the natural logarithm of the monthly yields of the federal 

funds rate (r^) and 10-year interest rate on U.S. government securities (r^) obtained from 

the CD-ROM version of the International Financial Statistics over the 1979:10 - 1997:04 

period with a total of 211 observations (see Figure 4.1). The federal fiinds rate is chosen 

since it is an instrument of monetary policy and the 10-year yield is chosen since it 

represents an indicator of inflationary expectations. I begin the sample in 1979:10 because of 

changes in Federal Reserve operating procedures. It is generally accepted that short-term and 

long-term interest rates are 1(1) and cointegrated such that the interest rate differential is 

stationary (see Stock and Watson, 1988). Let's define y as the spread of and and dy as 

the first-order difference of y, i.e., y = and dy, = y, - y,.,. The time path of y appears in 

Figure 4.2 and the plot of dy appears in Figure 4.3. From the plots, it seems that and 

move together except over the period of 1991-1994, when and drift away from each 

other. 

The results of unit-root tests for y are reported in Table 4.1. Here, the Dickey-Fuller 

unit-root test statistics t^, with value of -2.53, cannot reject the unit-root null hypothesis at 

the 5% significance level with one lag. The TAR unit-root test statistic, (p^, for y, with value 
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Figure 4.1 Natural Logrithm of the U.S. Interest Rates: R_S and R_L (79:10 - 97:04) 
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Table 4.1 The Results for the Unit Root Tests of the Spread of the Natural Logarithm 

of Interest Rates in U.S. (79:10-97:10)' 

Type of Test Statistic Value 

Dickey-Fuller Unit-root Test T 
It 

-2.53 

(-2.88)" 

TAR Unit-root Test' 

5.18 

(4.56) 
TAR Unit-root Test' 

Hq: PI ~ P2 
3.89 

(0.05)'' 

TAR Unit-root Test ® with Consistent 

Threshold" 

12.89 

(4.56) TAR Unit-root Test ® with Consistent 

Threshold" 
Hq: Pi ~ P2 

18.20 

(0.00) 

M-TAR Unit-root Test' 

9' 
4.78 

(4.95) 
M-TAR Unit-root Test' 

Hq: Pi ~ P2 
2.51 

(0.11) 

M-TAR Unit-root Test' with Consistent 

Threshold' 

<P' 
5.72 

(4.95) M-TAR Unit-root Test' with Consistent 

Threshold' 
Ho: pi=p2 

5.80 

(0.02) 

® The M-TAR with consistent threshold unit-root test has 2 lags, selected by SBC. The 

others have 1 lag. 

^ The numbers in the parentheses under the unit-root test statistics are the critical values at 

the 5% significance level. 

These are unit-root tests developed by Enders and Granger (1998). 

^ All numbers in the parentheses under the F-statistics for symmetry are the p-values. 

The consistent thresholds are estimated by Chan's (1993) method. 
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of 5.18, can reject unit-root at the 5% significance level, and the value of F statistic can 

reject the null hypothesis of symmetric adjustment with one lag. Then, the M-TAR unit-root 

test statistic, (p^ , and the F statistic, with values of 4.78 and 2.51, are not large enough to 

reject the null hypotheses of unit-root and symmetric adjustment at the 5% significance level 

with one lag. In the end, Chan's (1993) method is used to get the consistent estimate of 

thresholds for TAR and M-TAR models and then the unit-root and synmietry tests are 

conducted. The TAR unit-root test statistic, 9^, and F statistic, with value of 12.89 and 

18.20, reject the null hypotheses of unit-root and the symmetric adjustment at the 5% 

significance level with one lag. The M-TAR unit-root test statistic, (p^, and the F statistic, 

with the values of 5.72 and 5.80 respectively, are large enough to reject the null hypotheses 

of unit-root and symmetric adjustment at the 5% significance level with two lags. 

Since the above results of the unit-root tests of y are kind of ambiguous, I estimate y 

and its first-order difference, dy, at the same time over the period of 1980:2 - 1997:4 (I 

started fi'om the same period such that the AIC and SBC are directly comparable). 

4.3 In-Sample Estimation Results 

4.3.1 In-Sample Estimation Results of y 

Table 4.2 reports the selected models for the spread of the natural logarithm of interest 

rates. The ARMA(1,1) model is the best model among the ARMA models. The estimated 

residual autocorrelation function and the Ljung-Box Q statistic suggest that the model is 

adequate in the sense that there is little linear structure in the residual. However, firom the 

results of the last column of Table 4.2, the non-linear time series models can reduce the 
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Table 4.2 Estimated Models for y, the Spread of the Natural Logarithm of Interest 

Rates in U.S. (80:2-97:10) 

MODEL TYPE ESTIMATED MODEL AIC SBC RATIO^* 

ARMA(l,l) 
y, = 0.246 + 0.940 y,., + 0.288 , 

(2.64)" (41.63) (4.16) 
-44.14 -34.14 

TAR 

(1)= 

y, = 0.990y,.„ ify,., s 0 

(75.84) 

y, = -0.049 +1.165 y,., - 0.988 y,.2 

(-2.90) (9.23) (-4.88) 

+ 0.718y,.3 - 0.289y,^, if y,., < 0 

(3.03) (-1.98) 

-62.68 -42.68 0.887 

TAR 

(2)" 

y, = 1.230 y,, I, + 1.024 y,, (l-I.) 

(18.28) (12.70) 

- 0.243 y,, 

(-3.64) 

where 1, = 1 if y,., sO, 0 ify,.i<0 

-50.10 -40.10 0.972 

' Ratio is the ratio of the residual variances of the nonlinear model and that of the ARMA(1, 

I) model. 

All numbers inparentheses are T-statistics. 

TAR(1) and TAR-C(l) are TAR models with the form of (2.6) and (2.8). 

•"TAR (2) and TAR-C(2) are TAR models of the form of (2.5) and (2.6). 

'TAR-C and M-TAR-C stand for the TAR and M-TAR models using a consistent estimate 

of the threshold (Chan, 1993). 

^M-TAR(l) and M-TAR-C(l) are M-TAR models with the form of (2.7) and (2.8). 

^ M-TAR (2) and M-TAR-C(2) are M-TAR models of the form of (2.5) and (2.7). 
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Table 4.2 (continued) 

MODEL TYPE ESTIMATED MODEL AIC SBC RATIO" 

TAR-e 

( x y  

Yt = 1.189 y,.i - 0.202 Yt.i, if y,.|i-0.083 

(16.73) (-2.86) 

y, = -0.134 + 1.100 yt., - 1.294 y,.2 

(-4.46) (6.22) (-5.05) 

+ 0.840 y,.3 - 0.390 yt4, 

(3.23) (-2.52) 

ify,.i< -0.083 

-80.13 -53.47 0.798 

TAR-e 

af 

y. = 1.225 y,., It +0.971 y,,(l-I,) 

(18.32) (12.65) 

- 0.237 y..2 

(-3.60) 

where I, = 1 if y,.i ^ -0.10186,0 if 

y,.,<-0.10186 

-53.25 -39.92 0.948 

M-TAR 

(i)^ 

y, = 0.032 + 0.918 y,.,. ifdy,.| 2O 

(3.92) (37.54) 

yt = 1.279 y,., - 0.635 yi.2 + 0.356 yt.3 

(11.10) (-3.81) (3.47) 

if dy,.i < 0 

-53.05 -36.39 0.939 

M-TAR 

(2)« 

y. = 1.252y.., It +1.205y..,(l-1.) 

(17.56) (17.36) 

- 0.446 y,.2 + 0.195 y,.3 

(-4.06) (2.67) 

where It = 1 if dy,., ^ 0,0 if dyn<0 

-43.30 -29.97 0.987 
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Table 4.2 (continued) 

MODEL TYPE ESTIMATED MODEL AIC SBC RATIO" 

M-TAR-C 

(1)^ 

y, = 0.038 + 0.918 yt.„ ifdy,., ^0.0309 

(3.49) (32.43) 

y, = 1.267 y,., - 0.580 y,.2 + 0.306 y,.3, 

(11.99) (-3.88) (3.38) 

ifdy,.,<0.0309 

-48.42 -28.42 0.950 

M-TAR-C 

(2)8 

y,= 1.255y,.,I, +1.130y,.,(l-I,) 

(18.28) (15.26) 

- 0.434 y,.2 +O.I 74 y,.3 

(-4.14) (2.57) 

where I, = 1 if dy,., ^0.07249,0 if 

dy,.,<0.07249 

-47.63 -30.97 0.961 

GAR 

y, =1.242 y,., - 0.338 y,.2 

(18.58) (-5.09) 

-0.611>'/_, + 0.540 y,., y,.2 

(-5.04) (6.03) 

-69.53 -56.20 0.874 

EAR 

y, = 1.336 exp (->'^^_,)y,., 

(17.73) 

+ [0.850- 1.378 exp (->'/.,)] y,.^ 

(8.57) (-13.28) 

+ 0.165 y,.3 

(2.44) 

-51.08 -37.75 0.949 

BILINEAR 

(2,0;1,2) 

y, = 1.461 y,., - 0.465 y,.2 -1.864 y,.,e^ , 

(23.75) (-7.65) (-12.38) 

+ 0.959 y,., 

(7.99) 

-65.14 -48.44 0.884 
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residual variance^. 

Two forms of TAR models are estimated and both of them have much smaller AIC, 

SBC and residual variance than the ARMA(1,1) model. The TAR(l) model is the two-

regime TAR model of the form of (2.6) and (2.8). The TAR(2) model is the two- regime 

TAR model of the form of (2.5) and (2.6), which indicates that the AR(2) process for the 

positive spread is a more persistent process than that for the negative. This means that 

negative shocks to the spread decay more quickly than to positive shocks. Chan's (1993) 

method is used to estimate the consistent thresholds. The TAR(l) model of the form of (2.6) 

and (2.8) with consistent estimate of the threshold is the best model of all the estimated 

models insofar as the AIC and residual variance are the smallest among all the models. The 

TAR(2) model with consistent estimate of the threshold has smaller AIC and residual 

variance, but larger SBC than the TAR(2) model. 

Two forms of M-TAR models are estimated. The M-TAR(l) model is the two- regime 

TAR model of the form of (2.7) and (2.8), which is better than the ARMA(1,1) model. The 

M-TAR(2) model is the two-regime M-TAR model of the form of (2.5) and (2.7), which is 

worse than the ARMA(1,I) model. The M-TAR model exhibits larger decay for negative 

changes in the spread than for positive ones; i.e., increases are more persistent than 

decreases. Chan's (1993) method is used to estimate the consistent thresholds. The M-

TAR(l) model with consistent estimate of the threshold is worse than that without consistent 

estimate of the threshold, but the M-TAR(2) model with consistent estimate of the threshold 

is better than that without consistent estimate of the threshold. 
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The best-fitting GAR model fits the data substantially better than the ARMA(1,1) 

model insofar as the AIC, SBC and variance of the residual are much smaller by adding the 

higher order components to the conventional AR model. 

The best-fitting EAR model is the model with exponential coefficients of the first and 

second lags and it is better than the ARMA(1,1) model. The periods surrounding the turning 

points of a time series have similar dynamic structures, whereas the middle ground can have 

different dynamics. The coefficients of y,.i and y,.2 depend on y,.,. The larger the absolute 

values of the lagged spread deviations fi'om its long-run equilibrium, the more persistent the 

dynamics of the EAR process insofar as the summation of the coefficients of yt., and yt.2 

becomes larger. 

The subset bilinear model is better than the ARMA model. This suggests that 

responses of the spread depend on its past observations and the correlation of the shocks and 

its past observations. 

4.3.2 In-Sample Estimation Results of dy 

Table 4.3 reports the selected models for the first-order difference of the spread of the 

natural logarithm of interest rates. The AR(4) model is the best model among the ARMA 

models. The estimated residual autocorrelation function and the Ljung-Box Q statistic 

suggest that there is no significant serial correlation in the residual. However, fi'om the 

results of the last column of Table 4.3, the non-linear time series models may reduce the 

residual variance a little bit. 

Two forms of TAR models are estimated. The TAR (1) model is the two- regime TAR 
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Table 4.3: Estimated Model for dy, the First-order Difference of the Spread of the 

Natural Logarithm of Interest Rates in U.S. (80:2-97:4) 

MODEL ESTIMATED MODEL AIC SBC RATIO" 

AR(4) 
dy, = 0.228 dy,., - 0.182 dy,.2-0.165dy,^ 

(3.36)" (-2.67) (-2.48) 
-46.18 -36.18 

TAR 

(1)^ 

dy, = 0.196dy,,, -0.184 dy,_,, if dy,., s 0 

(2.25) (-2.22) 

dy, = 0.279 dy,., - 0.357 dy,.2, if dy,.,< 0 

(2.71) (-3.52) 

-49.18 -35.85 0.977 

TAR 

(2)"' 

dy, = 0.231 dy,., I, + 0.238 dy,., (I -1,) 

(2.56) (2.28) 

- 0.165 dy,.2 

(-2.40) 

where I, = 1 if dy,., s 0, 0 if dy,.,<0 

-40.02 -30.03 1.031 

" Ratio is the ratio of the residual variances of the nonlinear model and that of the AR(4) 

model. 

All numbers in parentheses are T-statistics. 

c TAR(1) and TAR-C(l) are TAR models with the form of (2.6) and (2.8). 

^ TAR (2) and TAR-C(2) are TAR models of the form of (2.5) and (2.6). 

"TAR-C and M-TAR-C stand for the TAR and M-TAR models using a consistent estimate 

of the threshold (Chan, 1993). 

'^M-TAR(1) and M-TAR-C(l) are M-TAR models with the form of (2.7) and (2.8). 

»M-TAR (2) and M-TAR-C(2) are M-TAR models of the form of (2.5) and (2.7). 
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MODEL ESTIMATED MODEL AIC SBC RATIO" 

TAR-C 

(D-^ 

dy, = 0.016- 0.234 dyM.ifdy,., ̂ 0.007 

(2.51) (-2.77) 

dy, = 0.280 dy,.i - 0.358 dy,.2, 

(2.75) (-3.67) 

if dy,., < 0.007 

-50.98 -34.32 0.960 

TAR-C 

(2)'' 

dy. = 0.197 dy,., I, + 0.265 dy,.,(l-1,) 

(2.16) (2.65) 

- 0.182 dy,.2 - 0.165 dy,.4 

(-2.67) (-2.47) 

where I, = I if dy,., ^ 0.03859, 0 if 

dy,.,< 0.03859 

-42.44 -25.77 0.997 

M-TAR 

(1/ 

dy, = -0,316dy,.2- 0.255 dy,.4, if dV,.,^0 

(-3.19) (-2.47) 

dy, = 0.345 dy,.,, if d^n < 0 

(3.35) 

-50.63 40.63 0.978 

M-TAR 

(2)« 

dy, = 0.130 dy,., I, + 0.386 dy..,(l-1,) 

(1.48) (3.65) 

-0.170dy,.2 

(-2.50) 

where I, = 1 if d^,., ^0,0 if dVn<0 

-43.54 -33.55 1.007 
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Table 4.3 (continued) 

MODEL ESTIMATED MODEL AIC SBC RATIO" 

M-TAR-e 

(I)'" 

dy, = -0.577 dy,.2-0.317 dy,^, 

(-5.37) (-2.70) 

if d^yt.i 2:0.03 

dy, = 0.386 dy,.,, if d^y,., < 0.03 

(4.49) 

-73.17 -59.84 0.871 

M-TAR-e 

(2)8 

dy, = - 0.007 dy,.i I, + 0.452 dy,.,(l-1,) 

(-0.07) (4.87) 

- 0.228dy,.2 - 0.145dy,.4 

(-3.37) (-2.23) 

where I, = 1 if d^y,., ^0.03774,0 

ifdV,-,< 0.03774 

-53.88 -37.21 0.997 

GAR 

dy, = 0.228 dy,.,. 0.238 dy,.2 

(3.41) (-3.41) 

- 0.141 dy,.4+ 1.098 dyl^ 

(-2.14) (2.84) 

-52.23 -38.90 0.962 

EAR 

dy, = 0 .228dy, . , -0 .I8Idy,.2 

(3.35) (-2.67) 

- 0.166 exp (- ify/_,)dy,.4 

(-2.49) 

-46.20 -36.21 1.000 

BILINEAR 

(0,1;2,2) 

dy, = 0.261 -1.611 dy,., 

(4.24) (-4.86) 

+ 6.898 dy,., - 5.308 dy,.2 

(7.71) (-7.00) 

62.96 46.30 0.906 
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model of the form of (2.6) and (2.8), which has smaller AIC and residual variance, but larger 

SBC than the AR(4) model. The TAR (2) model is the two- regime TAR model of the form 

of (2.5) and (2.6), which is worse than the AR(4) model. From the TAR(2) model, the AR(2) 

model for the negative changes in the spread is a more persistent process than that for the 

positive ones. Thus, this estimated model is consistent with the asymmetric federal reserve 

policy. An increases in the long-term rate (representing an increase in inflationary 

expectations) is met with policy adjustments to decrease inflationary expectations. But the 

decreases in the long-term rate are allowed to persistent. Chan's (1993) method is used to 

estimate the consistent thresholds. The explanation is the same as the TAR model. 

Two forms of M-TAR models are estimated. The M-TAR (1) model is the two-regime 

TAR model of the form of (2.7) and (2.8), which is better than the AR(4) model. The M-

TAR (2) model is the two-regime M-TAR model of the form of (2.5) and (2.7), which is 

worse than the ARMA (1,1) model. The M-TAR model exhibits little decay for the 

decelerating deviations from its long-run equilibrium but substantial decay for accelerating 

ones; i.e., decelerating deviations from its long-run equilibrium are more persistent than 

accelerating ones. But smce the t-statistic of the coefGcient for dy,., when d^,., s 0 is not 

significant, the spread responds significantly to decelerating deviations from its long-run 

equilibrium, but does not respond significantly to accelerating ones. At the same time, 

Chan's (1993) method is used to estimate the consistent thresholds. Both of the M-TAR 

models with consistent estimate of the thresholds are much better than the corresponding M-

TAR models without consistent estimate of the thresholds and the AR(4) model. In fact, the 
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M-TAR-C model of the form of (2.7) and (2.8) is the best among all the models. 

The best-fitting GAR model can be writen as: 

dyt = 0.228 dy,., - (0.238 - 1.098 dy,.2) dy,.2 - 0.l4ldy,^. 

Thus, the coefficient of dy,.2 is a smooth flmction of dy,.2, and the larger the values of 

the past change in the spread the more persistent the estimated GAR model. This model fits 

the data a little better than the AR(4) models in the sense that the AIC, SBC and residual 

variance of this model are smaller. 

The best-fitting EAR model is the one with an exponential coefficient of the fourth 

lag, which has almost the same AIC, SBC and residual variance as the AR(4) model. The 

larger absolute values of the lagged change in the spread, the more persistent the dynamics 

of the EAR process. This is consistent with the results of the GAR model. 

The subset bilinear model is reported in the last row of Table 4.3. This model is 

substantially better than the AR(4) model insofar as the AIC, SBC and residual variance are 

much smaller. This suggests that responses of the changes of the spread depend on the 

shocks and the correlation of shocks and past changes in the spread. 

4.4 Out-of-Sample Forecasting Performance Results 

4.4.1 Method and Statistics Overview 

The forecast of the spread of interest rates is applied over the period of 1988:2-1997:4 

with a total of 111 forecast values. The 1-step ahead forecast of each model is estimated 

recursively, i.e., the data through period t is used to make the 1-step ahead forecast in period 

t+I for each model. The bias^ and its t-statistic are calculated by regressing the forecast error 
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on a constant for each model. MSPE ratios are the ratios of the MSPE of each non-linear 

model to that of the ARMA model. Mizrach's (1995) robust forecast comparison statistic is 

used to test the null hypothesis that MSPE ratio equals 1. 

Mizrach's (1995) robust forecast comparison statistic is used to test the null hypothesis 

that MSPEs are equal for two models, i.e., MSPE ratio for two models equals I. The idea 

and statistic are described as follows; 

Let ei,t and e2,, be the prediction errors of period t from model 1 and 2, respectively, 

where t = 1,n. Mizrach's (1995) robust forecast comparison test assumes that the two 

prediction errors are stationary processes from a bivariate population (E„ E2). Let U = E, -

E2 and V = E, + E2. If the MSPEs in the original population are equal, the covariance in the 

transformed series is zero. Thus, the null hypothesis of Mizrach's (1995) robust forecast 

comparison test is cov(U,V) = 0. Let u, = e,,, - ea,, and v, = e, i -t- 62,,. Then the robust forecast 

comparison test statistic is: 

COVSTAT= 
(i/»)E «,v, /=! 

11/2 
(4.1) 

1 " 
where k is the step of the forecasts and s (/I = — 12 vyu, v, .. The asymptotic 

wtrn^l Ht^i ' ' 

distribution of COVSTAT is standard normal. 
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4.4.2 Out-of-Sample Forecasting Performance Results of y 

The biases and their t-statistics, the MSPE ratios and the p-values of the Mizrach's 

robust forecast comparison statistics (they are in parentheses under MSPE ratios) are 

reported in Table 4.4. There is no evidence of significant forecast bias for all models since 

all the t-statistics are very small. 

The GAR model forecasts the best of all the models. The TAR(2), M-TAR(2), M-

TAR-C and bilinear models generate lower MSPEs than the ARMA(l,l) model, but all the 

MSPE reductions are not statistically significant since all the p-values of the Mizrach's 

robust forecast comparison statistics are very large. The other models generate higher 

MSPEs than the ARMA(1,1) model even though these increases in MSPE are not 

statistically significant either. Thus, non-linear time series models can forecast out-of-

sample better than the ARMA model, even though they do not significantly dominate the 

ARMA model. 

4.4.3 Out-of-Sample Forecasting Performance Results of dy 

The same rules as those for the spread the natural logarithm of interest rates are applied 

to forecast and assess the first-order difference of the spread the natural logarithm of interest 

rates over the same period of 1988:2-1997:4. The results are reported in Table 4.5. There is 

no evidence of sigm'ficant forecast bias for all models since all the t-statistics are very small. 

The TAR model of the form of (2.5) and (2.6) forecasts the best of all the models. The 

TAR and TAR-C(l) models, the M-TAR(2) model and the EAR model generate lower 

MSPEs than the AR(4) model, but all of the MSPE reductions are not statistically significant 
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Table 4.4 Bias and MSPE Ratios of Different Models for y, tlie Spread of the Natural 

Logarithm of Interest Rates in U.S. (88:2-97:4) 

MODEL BIAS" MSPE RATIOS" 

ARMA 
-0.005 

(-0.99) 

TAR 

(ir 
-0.005 

(-1.04) 

0.965 

(0.97) 
TAR 

(2)" 
-0.001 

(-0.30) 

0.882 

(0.87) 

TAR-C 

( I f  
-0.008 

(-1.54) 

1.216 

(0.92) 
TAR-C 

i2f 
0.002 

(0.35) 

0.855 

(0.88) 

M-TAR 

(1/ 
-0.001 

(-0.23) 

1.005 

(0.99) 
M-TAR 

(2)8 
-0.005 

(-1.24) 

0.873 

(0.83) 

M-TAR-C 

(1/ 
0.001 

(0.21) 

0.916 

(0.85) 
M-TAR-C 

(2)« 
0.002 

(0.36) 

0.860 

(0.88) 

GAR 
-0.001 

(-0.26) 

0.763 

(0.81) 

EAR 
-0.007 

(-1-41) 

1.102 

(0.91) 

BE.INEAR 
-0.004 

(-0.96) 

0.856 

(0.93) 
Bias is calculated by regressing the forecast error on a constant; the number below is its t-

statistic. 

'' MSPE Ratios are the ratios of MSPEs of the nonlinear models to that of the ARMA model; 

the numbers in parentheses are the p-values for the Mizrach's (1995) robust forecast 

comparison statistic, testing that the MSPE ratio equals 1. 

' TAR(l) and TAR-C(l) are TAR models with the form of (2.6) and (2.8). 

••The TAR (2) and TAR-C(2) are TAR models of the form of (2.5) and (2.6). 

®TAR-C and M-TAR-C stand for the TAR and M-TAR models using a consistent estimate 

of the threshold (Cnian,1993). 

'^M-TAR(l) and M-TAR-C(l) are M-TAR models with the form of (2.7) and (2.8). 

8The M-TAR (2) and M-TAR-C(2) are M-TAR models of the form of (2.5) and (2.7). 
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Table 4.5: Bias and MSPE Ratios of Different Models for dy, the First-order Difference 
of the Spread of the Natural Logarithm of Interest Rates in U.S. (88:2-97:4) 

MODEL BIAS" MSPE RATIO" 

AR(4) 
0.000 

(0.07) 

(I) '  
-0.000 0.947 

TAR 

(I) '  
(-0.06) (0.91)" 

TAR 
(2)"* 

0.000 0.896 
(2)"* 

(0.06) (0.78) 

(1)' 
0.006 0.992 

TAR-C 
(1)' 

(1.26) (0.99) 

(2)" 
0.001 1.018 

(2)" 
(0.27) (0.93) 

(1)^ 
0.001 1.075 

M-TAR 

(1)^ 
(0.28) (0.92) 

M-TAR 
(2)8 

-0.003 0.933 
(2)8 

(-0.57) (0.89) 

(I) 
0.004 L186 

M-TAR-C 

(I) 
(0.81) (0.89) 

M-TAR-C 
(2) 

-0.003 1.066 
(2) 

(-0.69) (0.96) 

GAR 
0.003 

(0.63) 

1.067 

(0.90) 

EAR 
0.000 0.978 

EAR 
(0.07) (0.91) 

BILINEAR 
0.001 

(0.15) 

1.031 

(0.98) 
' Bias is calculated by regressing the forecast error on a constant; the number below is its t-

statistic. 

" MSPE Ratios are the ratios of MSPEs of the nonlinear models to that of the AR(4) model; 

the numbers in parentheses are the p-values for the Mizrach's (1995) robust forecast 

comparison statistic, testing that the MSPE ratio equals 1. 

" TAR(1) and TAR-C(l) are TAR models with the form of (2.6) and (2.8). 

''The TAR (2) and TAR-C(2) are TAR models of the form of (2.5) and (2.6). 

'TAR-C and M-TAR-C stand for the TAR and M-TAR models using a consistent estimate 

of the threshold (Chan, 1993). 

'^M-TAR(1) and M-TAR-C(l) are M-TAR models with the form of (2.7) and (2.8). 

®The M-TAR (2) and M-TAR-C(2) are M-TAR models of the form of (2.5) and (2.7). 
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because all the p-values of the Mizrach's (1995) robust forecast comparison statistic are 

very large. The other models generate higher MSPEs than the AR(4) model even though 

these increases in MSPE are not statistically significant either. Thus, the AR(4) model is not 

statistically significantly dominated by non-linear models for the out-of-sample forecast. 

Since all the p-values are very high, there is no statistically significant difference in the 

MSPE between the non-linear time series models and the AR(4) model. 

4.5 Monte Carlo Simulation Results 

Even though the non-linear time series models can estimate and forecast better than 

the ARMA model, the MSPE reductions of the non-linear time series models are not 

statistically significant and the results of in-sample estimation and out-of-sample forecast are 

not always consistent. To check whether the dominance of non-linear time series models 

results from non-linearity of the term structure of interest rates or from overfitting, I apply 

the previous Monte Carlo simulation again by generating a true ARMA(1,1) process with 

the parameters are the same as the estimated parameters of y (The simulation of previous 

chapter is conducted on AR processes, not on ARMA processes). That is, I generate the 

following ARMA( 1,1) process: 

= 0.246 + 0.94;^^ J + 0.288e^ ^ + e,,t = l,..., 100 

Then I estimate it as the true ARMA(1,1), ARMA, AR, bilinear, EAR, GAR, TAR-C 

and M-TAR-C models using the same searching rule as before. Finally, one-step ahead 

recursive forecast is used to forecast the period of t = 51,..., 100. The means of the AIC, 

SBC and MSPE are reported in Table 4.6. The M-TAR-C model has the smallest AIC, GAR 
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Table 4.6 The Means of the AIC, SBC and MSPE for the True ARMA Model: 
y(t) = 0.246 + 0.94*y(t-l)+0.288*e(t-l) + e(t) 

ARMAT »_AIC 446.2126 

ARMA_AIC 447.2431 

BL_AIC 447.4484 

AR_AIC 446.1170 = 

EAR_AIC 445.7011 

GAR_AIC 445.3037 

TARC_AIC 444.1361 

MTARC AIC 443.6905" 

ARMAT_SBC 453.9368 

ARMA_SBC 453.2628 

BL_SBC 453.9186 

AR_SBC 451.7839 

EAR_SBC 451.5328 

GAR_SBC 450.8934 

TARC_SBC 457.4422 

MTARC SBC 455.8406 

ARMAT_MSPE l.lOlO 

ARMA_MSPE 1.1448 

BL_MSPE 1.1526 

AR_MSPE 1.1240 

EAR_MSPE 1.1314 

GAR_MSPE 1.1751 

TARC_MSPE 1.3329 

MTARC_MSPE 1.2673 

' ARMAT stands for the true ARMA(1,1) model with known order. 

The underlined numbers are the smallest among all the models for the AIC, SBC and 

MSPE. 

' The bold numbers are the smallest AIC, SBC and MSPE among the true ARMA, ARMA 

and AR models. 
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model has the smallest SBC of all the models and the true ARMA model has the smallest 

MSPE. These results are the same as those of the AR processes. If we do not know the true 

order of the ARMA process, all the AIC, SBC and MSPE select the AR model for the linear 

model. If we consider the ARMA model, only the EAR model has a smaller MSPE than the 

ARMA model and all other non-linear time series models have larger MSPEs than the 

ARMA model. Thus, if the true process is an ARMA process, it is quite possible to select 

the AR model and the forecast of non-linear models can not beat the AR mode. At the same 

time, it is very unlikely that GAR, TAR-C, MTAR-C and bilinear models can generate 

lower MSPEs than the ARMA model with unknown order. Since the simulation results are 

not consistent with the results of y, I conclude that the dominance of non-linear time series 

models results from non-linearity of the term structure of interest rates, not from overfitting. 

4.6 Conclusions 

The results are siunmarized in Table 4.7. For the spread, the GAR model forecasts the 

best. The TAR, TAR-C of the form of (2.5) and (2.6), GAR and bilinear models are better 

than the ARMA model for both in-sample estimation and out-of-sample forecast. For the 

first-order difference of the spread, the TAR model of the form of (2.5) and (2.6) forecasts 

the best, even though it is worse than the AR model for in-sample estimation. The EAR 

model is better than the AR model for both the in-sample estimation and out-of-sample 

forecast. Also, it is not very likely that the dominance of non-linear models results from 

overfitting. Thus, non-linear models can dominate ARMA models for the in-sample 

estimation and out-of-sample forecast of the term structure of interest rates, even though 
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Table 4.7 The Summary of the Estimation and Forecast Results for the Spread and the 
First-order Difference of the Spread of Interest Rates in U.S. 

Models 
Spread First-order Difference of the Spread 

Models 
In-sample Out-of-sample In-sample Out-of-sample 

TAR i i y  B" B A-^ B 

TAR (2)" B B W 

TAR-C8 (I)' B W A B 

TAR-C8 (2)'^ B B W W 

M-TAR (l)" B W B W 

M-TAR (2)' W B W B 

M-TAR-C« (1)" A B B W 

M-TAR-C8 (2)' A B B w 

EAR B W B B 

GAR B B B W 

Bilinear B B B W 

' TAR(1) and TAR-C(l) are TAR models with the form of (2.6) and (2.8). 

** B means that the nonlinear model is better than the ARMA model in term of the AIC and 

SBC for in-sample estimation or the MSPE for out-of-sample forecast. 

A stands for ambiguity, i.e., the nonlinear model has a smaller AIC, but a larger SBC than 

the ARMA model. 

•"The TAR (2) and TAR-C(2) are TAR models of the form of (2.5) and (2.6). 

' W means that the nonlinear model is worse than the ARMA model in term of the AIC and 

SBC for in-sample estimation or the MSPE for out-of-sample forecast. 

*^6 means the best model among all the models. 

8 TAR-C and M-TAR-C stand for the TAR and M-TAR models using a consistent estimate 

of the threshold (Chan,1993). 

•' M-TAR(1) and M-TAR-C(l) are M-TAR models with the fomi of (2.7) and (2.8). 

' The M-TAR (2) and M-TAR-C(2) are M-TAR models of the form of (2.5) and (2.7). 
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none of the non-linear models significantly dominates the ARMA model for the out-of-

sample forecast. 

Notes 

' See Enders and Granger (1998) for detail. 

T 

Y. t=\ 
^ The residual variance, a^= ^ , where e -y -y is the estimated residual, e y- J I I •' t 

e = — is the mean of the estimated residuals and T is the number of usable observations. 

S = 

forecasted value of y, and n is the number of forecasts. 

^ Bias measures the mean of forecast errors. BL4S = , where v is the 
n ' 
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CHAPTER 5 ESTIMATION AND FORECAST OF THE PRICE 

SPREAD IN THE U.S. PORK SECTOR 

5.1 Literature Review 

It is generally acknowledged that middlemen in the agricultural markets pass on input 

price increases to customers more rapidly and completely than input price decreases. Several 

theoretical and institutional reasons of asymmetric price response have been proposed. First, 

cost. Ward (1982) pointed out that agents may be hesitant to raise prices of perishable goods 

for fears of holding spoiled stocks. Bailey and Brorsen (1989) argued that asynmietric 

adjustment costs for price increases and decreases may be the reason of asymmetric price 

adjustments. Ball and Mankiw (1994) presented a menu-cost model with a positive trend 

inflation to show that prices respond more strongly to positive shocks than to negative 

shocks. Secondly, different market power for different levels of marketing chains. The 

agricultural markets are often less concentrated at the farm level than the wholesale and 

retail levels. For example. Oligopolistic processors may response collusively more rapidly to 

shocks that squeeze the margin than to shocks that stretch the margin. This asymmetric 

responses may result in asymmetric price transmission (Goodwin, 1994; Weaver et al., 1989; 

von Cramon-Taubadel,1998). Thirdly, government intervention (Kinucan and Forker, 1987). 

For example, if policies support producer prices, processors may reluctant to response to 

input price decreases, but adjust output prices quickly to input price increases because they 
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expect that the decreases in producer prices will be more transient than increases in producer 

prices. Finally, Kinucan and Forker (1987) attributed asymmetric price transmission in dairy 

markets to the shocks originating from demand shifts by arguing that farm demand is less 

elastic than retail demand. 

Lots of research has investigated the interrelationship and transmission of prices at 

farm, wholesale and retail markets for vegetable, meat and livestock products. In general, 

most of the research reached the following results: (1) existence of significant lag 

adjustments in prices at the various market levels (Boyd and Brorsen, 1988; Hahn, 1990); 

(2) the existence of asynmietric price adjustments at the various market levels though the 

extent of asymmetry is generally modest; (3) transmission of shocks flows firom farm to 

wholesale to retail markets but not in the opposite direction. In particular, farm prices are 

relatively unresponsive to shocks in wholesale and retail markets and retail prices are 

responsive to shocks at farm level. For example, Ward (1982) found both short-run and 

long-run asymmetry in vertical price transmission of fresh vegetables in U.S., while Zhang 

et. al. (1995) found that the transmission from peanut to peanut butter prices in U.S. is 

asymmetric in the short-run, but symmetric in the long-run. Kinnucan and Forker (1987) 

showed the asymmetric farm-retail price transmission for New York State apples, and 

Hansmire and Willett (1992) reached the same conclusion for the dairy product in U.S.. 

Hahn (1990) showed that prices at all levels of the U.S. beef and pork market chains are 

more responsive to positive shocks than to negative shocks even though Boyd and Brorsen 

(1988) found no evidence of asymmetric vertical price transmission in the U.S. pork market. 
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Pick et al. (1990) found that the short-run, but not the long-run, vertical price transmission 

on the U.S. citrus market is asynmietric. Appel (1992) found that both the speed and 

magnitude of price transmission from the farmer to the retailer of broilers in Germany is 

asynmietric. Most of these studies confined to the standard model for estimating 

irreversibility developed by Wolf&am (1971) and later modified by Houck (1977) and Ward 

(1982). That is, the response of a price Pj to another price Pj is estimated with equation 

(5.1): 

(5.1) 

where AP^ and AP* are the positive and negative changes in P respectively, Oo, and a* are 

coefficients and t is the current time period. The symmetric test is the test of the null 

hypothesis: Ho: = a'. Some authors estimated the equation (5.2) and then test the short-run 

and long-run asymmetry, respectively. 

Eap", 

1=1 " *=0 * *\ /=i •'•7 *=0 1=1 J'') 
+e. (5.2) 

where AP"^ and AP" are the positive and negative changes in P respectively, a^, and 

are coefficients, X is the lag period and t is the current time period. Then, the long-run 

X x 
symmetric test is the test of the null hypothesis: hq: and the short-run 

t=o k=0 

symmetry test is the test of the null hypothesis: Ho: = or.^for k = 0,1,...,X. 
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von Cramon-Taubadel (1998) showed that the estimation of Wolf&am-Houck model 

does not adequately consider the time series properties of the data. That is, given the 

nonstationarity in individual prices, the equation (5.1) is a spurious regression and is 

inconsistent with cointegration. To see this, we can substitute (5.3) to (5.1) and get (5.4) by 

rearranging (Ward, 1982:206). 

= (5.3) 

t 

If P: and Pj are 1(1), which is usually true in practice, thenj^ AP/ is also 1(1). So there 
/=i 

are four cases related to (5.4) depending on -a' and e^: 
T 

I, a' - o" * O(asynimetry) and e is 1(0). Then Pj, P. and ^ 

cointegrated and Pj and Pj are not cointegrated. 

n. - a' * O(asymmetry) and 8^ is 1(1). Then because of non-stationary of 

E^, (5.1) is a spurious regression. 

in. - a' = 0 (symmetry) and is 1(1). Then (5.1) is a spurious regression 

too. 

IV. - a' = 0 (synunetry) and is 1(0). Then Pj and Pj are cointegrated. 

Thus, WolfGram-Houck model is inconsistent with the asymmetry and cointegration. 

This problem can be solved by error-correction model if prices are cointegrated. Following 
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Granger and Lee's (1989) modification of an error-correction representation, von Cramon-

Taubadel proposed an asymmetric error-correction representation of (5.5) and (5.6) to test 

for asymmetric price transmission; 

1',.-%*^'',.*'', <5-5) 

where (5.5) is the cointegrating relation, aJ^L) and ajL) are lag polynomials, the error-

correction term is: 

• P,,,., - P. - (5.7) 

ECT*^and ECT^'^ are the positive and negative ECT^^, respectively. Then the 

symmetry test is the test of the null hypothesis; hq; oJ =aj. 

von Cramon-Taubadel then applied the asynmietric error-correction model to the 

transmission of weekly producer and wholesale pork prices in northem Germany and found 

the asymmetric price transmission in the sense that the margin is corrected more rapidly 

when it is squeezed relative to its long-run level than when it is stretched. Goodwin and Holt 

(1999) used a three-regime threshold error-correction model to examine the price 

interrelationship and transmission among farm, wholesale and retail level in the U.S. beef 

marketing channel and found that prices respond asymmetrically to positive and negative 

shocks and shocks are largely unidirectional with information flowing from farm to 
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wholesale to retail market, but not the opposite direction. Harper and Goodwin (1999) 

applied the same technique as Goodwin and Holt (1999) to the U.S. pork sector and got 

similar conclusions. 

An interesting issue here is how to model the asymmetric adjustments and which 

model can forecast the best for the spread of prices at wholesale and retail markets for the 

U.S. pork sector. Towards this end, I will apply the previous non-linear time series models 

to the U.S. pork sector. 

S.2 Data Description 

The data used here are the monthly data of wholesale and farm prices of pork of U.S. 

from January 1970 to June 1999, with a total of 354 observations (see Figure 5.1). Both were 

collected from USDA Economic Research Service data, with units of cents per retail pound. 

From the construction, the two prices are comparable. To investigate the asymmetric 

property of the adjustment, I study the spread, the logarithm of the ratio of the wholesale and 

farm prices. That is, I define y = spread = log(wholesale/farm) (see Figure 5.2). Constructing 

the spread this way will avoid finding an appropriate price index to get real prices. 

Otherwise, different price index may lead to different results. Let's define dy is the first-

order difference of y, i.e., dy, = y, - y,.| (see Figure 5.3). From the figure, the wholesale and 

farm prices move together. There is a big strike in the spread at the end of 1998. The farm 

prices decline significantly Avith a low of 29.3, which is well below the feed cost, in late 

1998, but the magnitude decline of wholesale prices is not as large as that of the farm prices 

and thus the spread hits its historical high value in December 1998. 
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Figure 5.1 The Wholesale and Farm Prices of Pork in U.S. (70:1 - 99:6) 
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The unit root test results for y are summarized in Table 5.1. First, the Dickey-Fuller 

unit-root test statistics t^for y, with value of -2.58, cannot reject the unit-root null 

hypothesis at the 5% significance level. The TAR unit-root test statistic, (p^, and F statistic, 

with values of 4.07 and 1.47, cannot reject unit-root and symmetric adjustment at the 5% 

significance level. Neither can the M-TAR unit-root test. Chan's (1993) method is used to 

get the consistent estimate of threshold. The TAR unit-root test statistic, (p^, and the F 

statistic, with the values of 6.40 and 6.05 respectively, are large enough to reject the null 

hypotheses of unit-root and symmetric adjustment at the 5% significance level, but the M-

TAR unit-root test cannot. 

However, if we disregard the period of 98:11 and 99:6, when there is a strike (the 

reason for doing so will be argued later), the Dickey-Fuller unit-root test statistics t^, with 

value of -3.07, reject the unit-root null hypothesis at the 5% significance level. The TAR 

unit-root test statistic, (p^, with the value of 5.02, can reject a unit-root at the 5% level, but 

the value of the F statistic is not large enough to reject the null hypothesis of symmetric 

adjustment. Same for the M-TAR um't-root test. Chan's (1993) method is used to get the 

consistent estimate of threshold, and the same results can be got. 

Since the results for the unit-root test of y are ambiguous, 1 estimate y with different 

kind of models and found that the summation of all coefGcients is dangerously near 1 and 

there are ARCH effects (see Engle, 1982). If I estimate the spread for the period of 70:l-

98:10, the summation of all coefScients is still dangerously near 1, but there are no ARCH 

effects. Thus, I consider the first-order difference of spread, dy. 
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Table 5.1 The Results for the Unit Root Tests of the Spread of the Pork Prices in U.S. 

Type of Test Statistic 

Period 

Type of Test Statistic 

70:1-99:6 70:1-98:10 

Dickey-Fuller Unit-root 
t 

-2.58 -3.06 

TAR Unit-root Test' 

4.07 5.02 

TAR Unit-root Test' 

Hq: Pi ~ Pz 1.47 0.64 

TAR Unit-root Test' with 

Consistent Threshold' 

<P 
6.40 5.94 

TAR Unit-root Test' with 

Consistent Threshold' 
Pi ~ P2 6.05 2.43 

M-TAR Unit-root Test' K 
3.40 5.07 

M-TAR Unit-root Test' 

Ho-' Pi — p2 0.16 0.75 

M-TAR Unit-root Test' 

with Consistent Threshold' 

"pi-

3.42 5.24 
M-TAR Unit-root Test' 

with Consistent Threshold' 
Ho^ pi — p2 0.19 1.07 

" All have 12 lags, selected by AIC. The SBC selected 2 lags, with significant serial 

correlation in the residuals. 

** The numbers in the parentheses under the unit-root test statistics are the critical values at 

the 5% significance level. 

These are unit-root tests developed by Enders and Granger (1998). 

^ All numbers in the parentheses under the F-statistics for symmetry are the p-values. 

" The consistent thresholds are estimated by Chan's (1993) method. 



www.manaraa.com

93 

The Dickey-Fuller unit-root test statistics for dy, with value of -5.59, reject the 

unit-root null hypothesis at the 1% significance level. The same conclusion can be reached 

for the period over 70:1-98:10. 

When I estimate dy with different models, I found that all the models, except the TAR 

model with consistent estimate of the threshold, have ARCH effects. Then I tried to find a 

GARCH model, but I could not find an appropriate GARCH model. The reason for the 

ARCH effects is that the shock at the end of 1998 to the farm price of pork results in an 

abnormal large spread, dy and variance of spread during that period. So I decide to estimate 

dy for the period of 70:1-98:10 with a total of 346 observations. 

5.3 In-Sample Estimation Results of dy 

The results for the in-sample estimation are reported in Table 5.2. All the models 

selected are satisfying the conditions of significant parameters, no serial correlation of the 

residuals and no ARCH effects. The AR(12) model is the best model among all the ARMA 

models. 

From the TAR model, the first lag of dy is not significant in each regime. I impose the 

coefficients of the second lag and the eleventh lag are the same in the two regime 

respectively because the F-tests for the null hypotheses of equality can not reject the null 

hypotheses. Even though the TAR model has a lower residual variance, the AIC and SBC 

are larger than those of the AR model. Chan's(1993) method is used to search a threshold of 

0.06686 and estimate the consistent TAR model. This model has lower residual variance, 

AIC and SBC than the TAR model. 
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Table 5.2 Estimated Models for dy, the First-order Difference of the Spread of 

the Pork Prices in U.S. (71:4-98:10) 

MODEL ESTIMATED MODEL AIC SBC RATIO" 

AR(12) 

dy, = 0.103 dy,., - 0.193 dy..^ - 0.186 dy,^ 

(1.99)" (-3.77) (-3.70) 

- 0.117 dy,.,+ 0.194dy,.„ + 0.206 dy,.,2 

(-2.35) (3.82) (3.99) 

-237.35 -214.54 

TAR 

dyt = - 0.186 dy,.2 + 0.242dy,.,, 

(-3.52) (4.82) 

+ 0.304dy,.,2+0.191dy,.,3, if dy,., ^ 0 

(4.22) (2.77) 

dy, = - 0.186 dy,.2- 0.215 dy,.3 - 0.226 dy,_, 

(-3.52) (-3.15) (-3.29) 

- 0.197 dy,.io + 0.242dy,.,,, if dy,., < 0 

(-2.76) (4.83) 

-236.34 -209.72 0.987 

TAR-C 

dy, = 0.367 dy,., - 0.485 dy,., + 1.018 dy,., 

(2.44) (-2.48) (3.87) 

- 1.090dy,.9 -1.518 dy,.,3, 

(-5.05) (-4.25) 

if dy,., 2 0.06686 

dy, = 0.134 dy,., - 0.201dy,.2 - 0.157dy,.4 

(2.32) (-3.86) (-3.16) 

+ 0.256 dy,.,, + 0.209dy,.,2 

(5.02) (4.07) 

+ 0.117 dy,.,3, if dy,., < 0.06686 

(2.22) 

-255.91 -210.29 0.902 

a Ratio is the ratio of the residual variances of the nonlinear model and of the linear AR 
model. 
** All numbers inparentheses are T-statistics. 
' TAR-C and M-TAR-C stands for the TAR and M-TAR models using a consistent estimate 
of the threshold (Chan, 1993). 
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Table 5.2 (continued) 

MODEL ESTIMATED MODEL' AIC SBC RATIO" 

dy, = -0.145 dy,.4 - 0.154 dy,., + 0.136 dy,.,o 

(-2.17) (-2.37) (2.28) 

+ 0.284 dy,.,2, if d^y,., ^ 0 

(3.96) 

M-TAR 
dy, = - 0.270dy,.2 - 0.210dy,.3 -0.251dy,4 

(-3.42) (-2.65) (-3.42) 

-0.263 dy,.6 - 0.161 dy,., - 0.185 dy,.,o 

(-3.28) (-2.07) (-2.19) 

+ 0.279 dy,.i, + 0.146dy,.,2, if d^y,., < 0 

(3.64) (2.02) 

-242.93 -197.31 0.931 

dy, = 0.006 - 0.191 dy,.4 - 0.159 dy,., 

(2.11) (-3.95) (-3.27) 

+ 0.142 dy,.,o+ 0.201 dy,.i2, 

(2.40) (4.01) 

ifd^,.,^ 0.0028 

M-TAR-C 
dy, = - 0.254dy,.2 - 0.21 ldy,.3 -0.191dy,.4 

(-3.35) (-2.83) (-3.95) 

-0.243 dy,.6 - 0.159 dy,., - 0.172 dy,.,o 

(-3.26) (-3.27) (-2.18) 

+ 0.283 dy,.|, + 0.201dy,.,2, 

(3.93) (4.01) 

ifdY-i< 0.0028 

-251.73 -209.90 0.920 
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MODEL ESTIMATED MODEL» AIC SBC RATIO" 

GAR 

dyt = - 0.287 dy,.2 + 0.239dy,.,, +0.473 dy,.,2 

(-5.80) (4.27) (7.38) 

+ 15.848 4'/_i + 3.804dy,.6 dy,.,o 

(2.44) (4.11) 

- 36.615 dyl^dy,.;- 63.235 dy^^dy,.^^ 

(-2.84) (-4.17) 

+ 37.644ify^^_,£j(v,_g -59.533 dyl^dy^_^ 

(2.78) (-4.21) 

-68.332 -28.670 dy^.,dyl^ 

(-3.77) (-2.59) 

-37.185 rfv,.,,^2,3-74.113 dy,_^dyl^ 

(-2.65) (-4.52) 

-32.357 +42.477 

(-2.25) (2.51) 

-43.427 A!,3-54.599 dy^.,dyl,^ 

(-3.40) (-4.04) 

-308.43 -243.79 0.743 

EAR 

dy, = 0.103 dy,., - 0.194 exp (-fl^/., )dy,.2 

(1.99) (-3.77) 

-0.186dy,^-0.117dy,., 

(-3.70) (-2.35) 

+ 0.194 dy,.,i + 0.206dy,.,2 

(3.82) (3.99) 

-237.37 -214.56 0.990 

BILINEAR 

dy, = 0.093 dy,.i - 0.184 dy,.2 - 0.187 dy,_, 

(2.01) (-4.13) (-4.11) 

- 0.179 dy,.9 + 0.203dy,.,, + 0.181 dy,.,2 

(-4.21) (4.39) (3.85) 

+ 9.812dy..,„e;., - 5.732 dy,.,e;.,„ 

(5.53) (-3.60) 

+ 2.468 dy,.,o 

(1.80) 

-262.22 -224.20 0.857 
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For the M-TAR model, even though it has lower residual variance and AIC, the SBC 

is larger than that of the AR model. Chan's(1993) method is used to search a threshold of 

0.0028 and estimate the consistent M-TAR model. This model has lower residual variance, 

AIC and SBC than the M-TAR model. 

The GAR model adds many third-order crossproducts to it. This model has the 

smallest residual variance, AIC and SBC among all the models. The explanation of it is not 

easy. 

By adding an exponential coefBcient to the second lag, the EAR model is slightly 

better than the AR model. 

The bilinear model is much better than the AR model by adding crossproducts of the 

lags of the dy and the residuals, which means that the change of the spread depends on its 

past observations and the correlation of its past observations and the shocks. 

5.4 Out-of-Sample Forecasting Performance Results of dy 

The 1-step ahead forecast of the first-order difference of the spread of the pork farm 

and wholesale prices is applied over the period of 1987:1-1998:10 with a total of 142 

forecast values. The forecast of each model is estimated recursively. The methodology and 

the test statistics are the same as those of the term structure of interest rates. 

The results of the out-of-sample forecasting are reported in Table 5.3. The forecasts of 

the M-TAR and GAR models are significantly biased downward. There is no significant 

forecast bias for other models. From the MSPE ratios, the GAR model generates the lowest 

MSPE among all the models. The MSPE of bilinear model is substantial lower than that of 
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Table 5.3 Bias and MSPE Ratios of Different Models for the First-order Difference of 

the Spread of the Pork Prices in U.S. (87:1-98:10) 

MODEL BIAS" MSPE RATIOS 

-0.003 
AR(12) 

(-0.81) 
-0.002 1.004 

TAR 
(-0.71) (0.99) 
-0.003 1.098 

TAR-C 
(-0.88) (0.95) 
-0.008 1.010 

M-TAR 
(-2.47) (0.99) 
-0.005 1.014 

M-TAR-e 
(-1.61) (0.98) 
-0.006 0.780 

GAR 
(-2.09) (0.83) 
-0.003 0.999 

EAR 
(-0.81) (0.98) 
-0.003 0.893 

BILINEAR 
(-0.96) (0.83) 

' Bias is calculated by regressing the forecast error on a constant; the number below is its t-

statistic. 

MSPE Ratios are the ratios of MSPEs of the nonlinear models to that of the AR model; the 

numbers in parentheses are the p-values for the Mizrach's (1995) robust forecast comparison 

statistic, testing that the MSPE ratio equals I. 

TAR-C and M-TAR-C stand for the TAR and M-TAR models using a consistent estimate 

of the threshold (Chan, 1993). 
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the AR model. The MSPE of the EAR model is slightly lower than that of the AR model. 

However, from the p-values of the Mizrach's (1995) robust forecast comparison statistic, 

since all of them are relatively large, the reductions in MSPE are not statistically significant. 

All other models have larger MSPEs than that of the AR model, although there are no 

statistical difference between them. One phenomenon needs to be pointed out is the absolute 

consistency of in-sample estimation and out-of-sample forecast. That is, those models that 

are better for the in-sample estimation than the AR model are also better for the out-of-

sample forecast, and verse versa. Comparing the results here with the simulation results of 

AR(2) models, it is not very likely that the dominance of the nonlinear models over the AR 

model for the spread of pok prices results from overfitting. 

5.5 Conclusions 

The results are summarized in Table 5.4. The GAR model is the best model for the 

first-order difference of the spread of the farm and wholesale pork prices for both the in-

sample estimation and out-of-sample forecast. The bilinear model is substantially better than 

the AR model for both the in-sample estimation and out-of-sample forecast. The EAR model 

is slightly better than the AR model for both the in-sample estimation and out-of-sample 

forecast However, the dominance of the GAR, EAR and bilinear models for the out-of-

sample forecast over the AR model is not statistically significant, which may be explained 

by the previous finding that the extent of price asymmetry is generally modest. 
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Table 5.4 The Summary of the Estimation and Forecast Results for the First-order 

Difference of the Spread of the Pork Prices in U.S. 

Models 

First-order Difference of the Spread 

Models 
In-sample Out-of-sample 

TAR W" W 

TAR-C A' W 

M-TAR A w 

M-TAR-C" A w 

EAR B" B 

GAR B' B 

Bilinear B B 

" W means that the nonlinear model is worse than the ARMA model in term of the AIC and 

SBC for in-sample estimation or the MSPE for out-of-sample forecast. 

'' TAR-C and M-TAR-C stand for the TAR and M-TAR models using a consistent estimate 

of the threshold (Chan, 1993). 

A stands for ambiguity, i.e., the nonlinear model has a smaller AIC, but a larger SBC than 

the ARMA model. 

''B means that the nonlinear model is better than the ARMA model in term of the AIC and 

SBC for in-sample estimation or the MSPE for out-of-sample forecast. 

B means the best model among all the models. 
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CHAPTER 6 CONCLUSIONS AND FUTURE WORK 

6.1 Main Conclusions 

For AR processes, if the AIC and SBC criteria are used to select models, the 

possibility of overfitting is very high since the non-linear models and other linear models are 

very likely to have lower AIC and SBC. However, the MSPE for one-step ahead out-of-

sample forecast can be used to identify the true AR processes. For TAR processes, the AIC 

can be used to identify the TAR-C models. The SBC and MSPE can identify the TAR 

process only if the difference of the persistence between the two regimes is large enough. 

Underfitting and misspecification are very likely to happen for a TAR process with small 

difference of the persistence between the two regimes. 

However, if we don't know the true AR or TAR process, the MSPE can't select the 

AR or TAR models in most cases. Thus, none of the AIC, SBC and MSPE can select the AR 

model for a given AR process with unknown order. For the TAR process, the AIC can 

consistently identify the TAR-C process and the SBC can identify the TAR-C process only 

if the difference of the persistency is large enough. 

For both the term structure of interest rates and the spread of wholesale and retail pork 

prices in U.S., there are non-linear time series models can do better than the conventional 

ARMA models for both in-sample estimation and out-of-sample forecast. Also, it is very 

unlikely that the dominance of the nonlinear time series models results from overfitting for 
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both the term structure of interest rates and the spread of wholesale and retail pork prices in 

U.S.. Thus, non-linear time series models are very useful for estimating and forecasting the 

non-linear time series. 

6.2 Future Work 

Many issues can be investigated further about the study of non-linear time series 

models. The followings are some examples. 

A natural extension to those univariate studies is to investigate the non-linearity in a 

multivariate context. Towards that end, Enders and Siklos (1999) developed a generalization 

of Engle-Granger (1987) testing procedure that allowing the TAR or M-TAR adjustment 

toward a cointegrating vector and applied an error-correction model with TAR and M-TAR 

adjustments to the short-term and long-term interest rate. Anderson (1994) estimated a 

smooth transition error-correction model of the U.S. treasury bill market. Granger and Lee 

(1989) investigated U.S. production, sale and inventory asymmetric relationship using 

multicointegration and asymmetric error-correction models. Given that many economic 

variables display asymmetric behavior, non-linear error-correction models will be a 

promising area to explore. Then, impulse response functions and variance decompositions 

can be used to study the adjustment processes to shocks. 

The research may be extended to conduct multi-step ahead forecast and check how 

non-linear time series models behave for different multi-step ahead forecasts. 

The Monte Carlo study of overfitting and forecasting may also be extended to 

multivariate cases. 
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